IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7303-d1134607.html
   My bibliography  Save this article

The Impact of Environmental Tax and R&D Tax Incentives on Green Innovation

Author

Listed:
  • Qian Zheng

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China
    School of Accountancy, Xinjiang University of Finance and Economics, Urumqi 830012, China)

  • Jinye Li

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China)

  • Xiaole Duan

    (School of Accountancy, Xinjiang University of Finance and Economics, Urumqi 830012, China)

Abstract

With the increasing severity of environmental threats, the role of governance in environmental protection is particularly important. This paper examines the policy effects of environmental regulation and its implementation and regulatory heterogeneity on green innovation from the perspective of a policy combination formed by demand–pull environmental taxes and supply–push R&D tax incentives, aiming to investigate the targeted effects of green innovation induced by regulatory policies in the tax environments of developing countries. Based on the data on China’s listed manufacturing enterprises from 2013 to 2021, this article uses the DID model to perform a fixed-effect test. The findings show that both environmental taxes and R&D tax incentives can promote the green innovation of enterprises, and their combination has a mutually reinforcing joint effect. Furthermore, an environmental tax can inhibit the strategic innovation problems of R&D tax incentives and improve the quality of green innovation. This paper also reveals that the tax enforcement environment positively affects the induction of green innovation from the perspective of policy implementation and supervision. Finally, the heterogeneity test examines the differences in the effects of policy implementation from the aspects of political association and whether manufacturing firm is a high-tech enterprise. The results of this paper provide a reference for improving the effectiveness of environmental regulatory policy portfolios from the aspects of pre-design optimization and post-implementation and supervision, enriching the evidence for the narrow Porter hypothesis in developing countries.

Suggested Citation

  • Qian Zheng & Jinye Li & Xiaole Duan, 2023. "The Impact of Environmental Tax and R&D Tax Incentives on Green Innovation," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7303-:d:1134607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Bloom, Nick & Griffith, Rachel & Van Reenen, John, 2002. "Do R&D tax credits work? Evidence from a panel of countries 1979-1997," Journal of Public Economics, Elsevier, vol. 85(1), pages 1-31, July.
    3. Bronwyn H. Hall & Dietmar Harhoff, 2012. "Recent Research on the Economics of Patents," Annual Review of Economics, Annual Reviews, vol. 4(1), pages 541-565, July.
    4. Allen Blackman & Zhengyan Li & Antung A. Liu, 2018. "Efficacy of Command-and-Control and Market-Based Environmental Regulation in Developing Countries," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 381-404, October.
    5. Zhao, Aiwu & Wang, Jingyi & Sun, Zhenzhen & Guan, Hongjun, 2022. "Environmental taxes, technology innovation quality and firm performance in China—A test of effects based on the Porter hypothesis," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 309-325.
    6. Stucki, Tobias & Woerter, Martin & Arvanitis, Spyros & Peneder, Michael & Rammer, Christian, 2018. "How different policy instruments affect green product innovation: A differentiated perspective," Energy Policy, Elsevier, vol. 114(C), pages 245-261.
    7. Roychowdhury, Sugata, 2006. "Earnings management through real activities manipulation," Journal of Accounting and Economics, Elsevier, vol. 42(3), pages 335-370, December.
    8. Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2017. "Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program," American Economic Review, American Economic Association, vol. 107(10), pages 2958-2989, October.
    9. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    10. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    11. Lans Bovenberg, A. & de Mooij, Ruud A., 1997. "Environmental tax reform and endogenous growth," Journal of Public Economics, Elsevier, vol. 63(2), pages 207-237, January.
    12. Millimet, Daniel L. & Roy, Jayjit, 2015. "Multilateral environmental agreements and the WTO," Economics Letters, Elsevier, vol. 134(C), pages 20-23.
    13. Hering, Laura & Poncet, Sandra, 2014. "Environmental policy and exports: Evidence from Chinese cities," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 296-318.
    14. Cristina Peñasco & Laura Díaz Anadón & Elena Verdolini, 2021. "Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments," Nature Climate Change, Nature, vol. 11(3), pages 257-265, March.
    15. Gilliam, Thomas A. & Heflin, Frank & Paterson, Jeffrey S., 2015. "Evidence that the zero-earnings discontinuity has disappeared," Journal of Accounting and Economics, Elsevier, vol. 60(1), pages 117-132.
    16. Magat, Wesley A., 1978. "Pollution control and technological advance: A dynamic model of the firm," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 1-25, March.
    17. Siying Long & Zhongju Liao, 2022. "Economic incentive instruments and environmental innovation in China: Moderating effect of marketization [Incentives for Environmental Self-regulation and Implications for Environmental Performance," Science and Public Policy, Oxford University Press, vol. 49(4), pages 553-560.
    18. Hall, Bronwyn & Van Reenen, John, 2000. "How effective are fiscal incentives for R&D? A review of the evidence," Research Policy, Elsevier, vol. 29(4-5), pages 449-469, April.
    19. Dimos, Christos & Pugh, Geoff, 2016. "The effectiveness of R&D subsidies: A meta-regression analysis of the evaluation literature," Research Policy, Elsevier, vol. 45(4), pages 797-815.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    2. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    3. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    4. Antoine Dechezleprêtre & David Popp, 2015. "Fiscal and Regulatory Instruments for Clean Technology Development in the European Union," CESifo Working Paper Series 5361, CESifo.
    5. repec:diw:diwwpp:dp1318 is not listed on IDEAS
    6. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    8. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    9. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    10. Francesco Crespi & Claudia Ghisetti & Francesco Quatraro, 2015. "Environmental and innovation policies for the evolution of green technologies: a survey and a test," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 5(2), pages 343-370, December.
    11. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    12. He, Wenjian & Cheng, Yu & Lin, Ying & Zhang, Hongxiao, 2022. "Microeconomic effects of designating National Forest Cities: Evidence from China's publicly traded manufacturing companies," Forest Policy and Economics, Elsevier, vol. 136(C).
    13. Zhao, Ziyi & Zhao, Yuhuan & Lv, Xin & Li, Xiaoping & Zheng, Lu & Fan, Shunan & Zuo, Sumin, 2024. "Environmental regulation and green innovation: Does state ownership matter?," Energy Economics, Elsevier, vol. 136(C).
    14. Xu, Ye & Wen, Shuang & Tao, Chang-Qi, 2023. "Impact of environmental tax on pollution control: A sustainable development perspective," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 89-106.
    15. Xiguang Cao & Min Deng & Fei Song & Shihu Zhong & Junhao Zhu, 2019. "Direct and moderating effects of environmental regulation intensity on enterprise technological innovation: The case of China," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-20, October.
    16. Huvaj, M. Nesij & Johnson, William C., 2019. "Organizational complexity and innovation portfolio decisions: Evidence from a quasi-natural experiment," Journal of Business Research, Elsevier, vol. 98(C), pages 153-165.
    17. Cai, Hechang & Wang, Zilong & Zhang, Zhiwen & Xu, Liuyang, 2023. "Does environmental regulation promote technology transfer? Evidence from a partially linear functional-coefficient panel model," Economic Modelling, Elsevier, vol. 124(C).
    18. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    19. Jie Jiang & Qihang Zhang & Yifan Hui, 2023. "The Impact of Market and Non-Market-Based Environmental Policy Instruments on Firms’ Sustainable Technological Innovation: Evidence from Chinese Firms," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    20. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Can environmental regulation solve pollution problems? Theoretical model and empirical research based on the skill premium," Energy Economics, Elsevier, vol. 94(C).
    21. Wang, Lianghu & Wang, Zhao & Ma, Yatian, 2022. "Does environmental regulation promote the high-quality development of manufacturing? A quasi-natural experiment based on China's carbon emission trading pilot scheme," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7303-:d:1134607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.