IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7135-d1131792.html
   My bibliography  Save this article

AHP-EWM Based Model Selection System for Subsidence Area Research

Author

Listed:
  • Ming Liang

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
    Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China)

  • Gen Yang

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China)

  • Xiaojun Zhu

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
    Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China)

  • Hua Cheng

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
    Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China)

  • Liugen Zheng

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
    Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China)

  • Hui Liu

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
    Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China)

  • Xianglin Dong

    (Huaibei Mining (Group) Co., Ltd., Huaibei 235000, China)

  • Yanhai Zhang

    (Huaibei Mining (Group) Co., Ltd., Huaibei 235000, China)

Abstract

Coal mining can create a variety of environmental, ecological, and land-use problems. Subsidence areas resulting from coal mining are a common and particularly difficult problem to manage. Despite much discussion in the academic literature as well as among local and international stakeholders, there is neither a uniform standard nor a universally accepted approach for selecting an appropriate governance model for a subsidence area. In particular, the lack of quantitative evaluation methods and excessive subjectivity represent key obstacles to the effective selection of governance models for subsidence areas. This paper proposes a selection framework for a coal mining subsidence governance model that integrates the analytic hierarchy process (AHP) and entropy weight method (EWM). The model comprehensively considers the settlement characteristics of the subsidence area, its geographic location, the water index, as well as the vegetation index. These variables are used as indicators to develop an evaluation framework upon which different subsidence zones can be quantitatively analyzed. The selection framework is demonstrated using examples from three subsidence areas in the Huainan and Huaibei mining areas in China, for which relevant data were collected and processed with the help of field surveys, remote sensing images, and subsidence prediction software. Applying the novel selection framework, the most suitable governance model for each subsidence area was obtained and determined to be consistent with the recommendations of an academic panel composed of multiple experts. The novel selection framework has high efficacy and potential to overcome the problem of subjectivity in the selection of governance models for coal mining subsidence areas. It is also envisaged that future incorporation of the selection framework into a user-friendly software package will significantly improve the efficiency with which suitable governance models for coal mining subsidence areas are selected.

Suggested Citation

  • Ming Liang & Gen Yang & Xiaojun Zhu & Hua Cheng & Liugen Zheng & Hui Liu & Xianglin Dong & Yanhai Zhang, 2023. "AHP-EWM Based Model Selection System for Subsidence Area Research," Sustainability, MDPI, vol. 15(9), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7135-:d:1131792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suyeon Kim & Sang-Woo Lee & Se-Rin Park & Yeeun Shin & Kyungjin An, 2021. "Socioeconomic Risks and Their Impacts on Ecological River Health in South Korea: An Application of the Analytic Hierarchy Process," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    2. Nolberto Munier & Eloy Hontoria, 2021. "Uses and Limitations of the AHP Method," Management for Professionals, Springer, number 978-3-030-60392-2, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuying Zhan & Xiaofan Zhang, 2024. "Coupled Climate–Environment–Society–Ecosystem Resilience Coordination Analytical Study—A Case Study of Zhejiang Province," Sustainability, MDPI, vol. 16(13), pages 1-34, July.
    2. Zhao, Hui & Hao, Xiang, 2024. "Location decision of electric vehicle charging station based on a novel grey correlation comprehensive evaluation multi-criteria decision method," Energy, Elsevier, vol. 299(C).
    3. Johnson Opoku-Asante & Emmanuel Bobobee & Joseph O Akowuah & Eric Amoah Asante, 2024. "Evaluation of integrated threshing and drying design concepts for paddy rice using analytical hierarchy process," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 14(1), June.
    4. Yanqing Wang & Hong Chen & Robert L. K. Tiong, 2023. "An exploratory research on the maturity level of public's emergency capability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 325-355, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhallil Abtahee & Afra Anika Islam & Md. Nazmul Haque & Hasan Zonaed & Samiha Mahzabin Ritu & Sk Md Imdadul Islam & Atiq Zaman, 2023. "Mapping Ecotourism Potential in Bangladesh: The Integration of an Analytical Hierarchy Algorithm and Geospatial Data," Sustainability, MDPI, vol. 15(15), pages 1-28, July.
    2. Minkyu Song & Boyoung Kim, 2024. "An Analysis of Critical Factors Affecting the Success of Open Innovation Strategies in High-Tech Firms: The Case of South Korea," Administrative Sciences, MDPI, vol. 14(11), pages 1-26, October.
    3. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2024. "A resilience-based maintenance optimisation framework using multiple criteria and Knapsack methods," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Marcos Antonio Alves & Ivan Reinaldo Meneghini & António Gaspar-Cunha & Frederico Gadelha Guimarães, 2023. "Machine Learning-Driven Approach for Large Scale Decision Making with the Analytic Hierarchy Process," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    5. Beheshtian-Ardakani, Arash & Salehi, Mostafa & Sharma, Rajesh, 2023. "CMPN: Modeling and analysis of soccer teams using Complex Multiplex Passing Network," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Wen-Chin Chen & An-Xuan Ngo & Hui-Pin Chang, 2024. "Enhancing Decision-Making Processes in the Complex Landscape of the Taiwanese Electronics Manufacturing Industry through a Fuzzy MCDM Approach," Mathematics, MDPI, vol. 12(13), pages 1-29, July.
    7. Petra Grošelj & Mehdi Zandebasiri & Špela Pezdevšek Malovrh, 2024. "Evaluation of the European experts on the application of the AHP method in sustainable forest management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29189-29215, November.
    8. Jin-Long Lin & Meng-Cong Zheng, 2024. "An Empirical Investigation on the Visual Imagery of Augmented Reality User Interfaces for Smart Electric Vehicles Based on Kansei Engineering and FAHP-GRA," Mathematics, MDPI, vol. 12(17), pages 1-21, August.
    9. Zorica Dodevska & Sandro Radovanović & Andrija Petrović & Boris Delibašić, 2023. "When Fairness Meets Consistency in AHP Pairwise Comparisons," Mathematics, MDPI, vol. 11(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7135-:d:1131792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.