IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6441-d1120133.html
   My bibliography  Save this article

Vietnam’s Water Resources: Current Status, Challenges, and Security Perspective

Author

Listed:
  • Quy-Nhan Pham

    (Faculty of Water Resources, Hanoi University of Natural Resources and Environment, Hanoi 100000, Vietnam)

  • Ngoc-Ha Nguyen

    (National Center for Water Resources Planning and Investigation, Hanoi 100000, Vietnam)

  • Thi-Thoang Ta

    (Faculty of Water Resources, Hanoi University of Natural Resources and Environment, Hanoi 100000, Vietnam)

  • Thanh-Le Tran

    (Faculty of Water Resources, Hanoi University of Natural Resources and Environment, Hanoi 100000, Vietnam)

Abstract

The current status of the exploitation, use, and management of water resources in the context of socioeconomic development, climate change, and issues related to the region are causing negative impacts on the water resources of Vietnam. This study aimed to develop a framework for assessing Vietnam’s water security based on the following key aspects: (i) the availability of water resources; (ii) the current status of water exploitation and use; (iii) the current status of waste water and water pollution; (iv) water resource management organization; and (v) water-related disasters, including floods, droughts, subsidence, coastal erosion, landslides, ecological imbalance, and diseases related to water resources. In particular, the challenges of transboundary water resources and the food–energy–water nexus were investigated. We reviewed the assessment frameworks that have recently been developed outside Vietnam or regions with similar climates and analyzed the characteristics of downstream and rapid-growth countries such as Vietnam using a number of key water resource indicators, both qualitative and quantitative. From these processes, we developed an assessment framework and provided a perspective on water security. The results of this study showed that the challenge of transboundary water resources, the impact of climate change, the pressure on socioeconomic development, and the water–energy–food nexus are core issues that need to be addressed from the perspective of water security in Vietnam. This case study may be helpful for downstream and developing countries.

Suggested Citation

  • Quy-Nhan Pham & Ngoc-Ha Nguyen & Thi-Thoang Ta & Thanh-Le Tran, 2023. "Vietnam’s Water Resources: Current Status, Challenges, and Security Perspective," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6441-:d:1120133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Józef Ober & Janusz Karwot, 2023. "The Effect of Publicly Available COVID-19 Information on the Functioning of Society, Businesses, Government and Local Institutions: A Case Study from Poland," IJERPH, MDPI, vol. 20(3), pages 1-25, February.
    2. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    2. Aleksandra Kuzior & Tetiana Vasylieva & Olga Liuta & Olha Deineka & Mariia Kashcha, 2023. "The Impact of the Organization of Public Health Systems on the Ability of Countries to Resist the COVID-19 Pandemic: The Experience of Developed Countries of the World and Ukraine," IJERPH, MDPI, vol. 20(12), pages 1-14, June.
    3. Yiyi Zhang & Huanzhi Fu & Xinghua He & Zhen Shi & Tao Hai & Peng Liu & Shan Xi & Kai Zhang, 2023. "Electricity-Related Water Network Analysis in China Based on Multi-Regional Input–Output Analysis and Complex Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    4. Sanaz Tajziehchi & Abdolreza Karbassi & Gholamreza Nabi & ChangKyoo Yoo & Pouya Ifaei, 2022. "A Cost-Benefit Analysis of Bakhtiari Hydropower Dam Considering the Nexus between Energy and Water," Energies, MDPI, vol. 15(3), pages 1-17, January.
    5. Wang, Xue-Chao & Yang, Lan & Wang, Yutao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Ouyang, Xiao & Dong, Xiaobin, 2022. "Imbalances in virtual energy transfer network of China and carbon emissions neutrality implications," Energy, Elsevier, vol. 254(PA).
    6. Aleksandra Kuzior & Bartosz Sobotka & Katarzyna Anna Postrzednik-Lotko & Brygida Smołka-Franke, 2023. "Managing Competences of Generation Y and Z in the Opinion of the Employees in the Modern Business Services Sector in Poland in the Post-Pandemic Period," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    7. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    8. Juan C. González Palencia & Yuta Itoi & Mikiya Araki, 2022. "Design of a Hydrogen Production System Considering Energy Consumption, Water Consumption, CO 2 Emissions and Cost," Energies, MDPI, vol. 15(21), pages 1-25, October.
    9. Li, Junjie & Yan, Yulong & Wang, Yirong & Zhang, Yifu & Shao, Lianwei & Li, Menggang, 2024. "Spatial-successive transfer of virtual scarcity water along China's coal-based electric chain," Energy, Elsevier, vol. 288(C).
    10. Qiong Su & Raghupathy Karthikeyan, 2023. "Regional Water Stress Forecasting: Effects of Climate Change, Socioeconomic Development, and Irrigated Agriculture—A Texas Case Study," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6441-:d:1120133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.