IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222012075.html
   My bibliography  Save this article

Imbalances in virtual energy transfer network of China and carbon emissions neutrality implications

Author

Listed:
  • Wang, Xue-Chao
  • Yang, Lan
  • Wang, Yutao
  • Klemeš, Jiří Jaromír
  • Varbanov, Petar Sabev
  • Ouyang, Xiao
  • Dong, Xiaobin

Abstract

It has been increasingly crucial for China to identify the critical regional transmission of embodied energy and the key sectors it flows, especially aiming toward the carbon emissions neutrality target. However, there are still very limited works that have focused on a similar topic. This study took 31 of the 34 provinces of China as cases, covered all economic sectors, explored the regional and sectoral embodied energy flow patterns and discussed the implications for carbon emissions neutrality. The results reveal that: ⅰ) The current embodied energy network in China is inequitable and imbalanced; ⅱ) Most of the beneficiaries with positive net values of embodied energy import/export are mainly located in the coastal area and the Yangtze River Economic Belt, and only Beijing is in northern China; ⅲ) Megacities increasingly rely on the upstream regions in terms of energy supply, transferring significant environmental pressure to other regions; ⅳ) Regional carbon compensation should be seriously considered while making both regional and national carbon emissions neutrality strategies. This study provides a clear version of the regional and sectoral embodied energy network system in China.

Suggested Citation

  • Wang, Xue-Chao & Yang, Lan & Wang, Yutao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Ouyang, Xiao & Dong, Xiaobin, 2022. "Imbalances in virtual energy transfer network of China and carbon emissions neutrality implications," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222012075
    DOI: 10.1016/j.energy.2022.124304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222012075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    3. Klemeš, Jiří Jaromír & Jiang, Peng & Fan, Yee Van & Bokhari, Awais & Wang, Xue-Chao, 2021. "COVID-19 pandemics Stage II – Energy and environmental impacts of vaccination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Baz, Khan & Xu, Deyi & Ampofo, Gideon Minua Kwaku & Ali, Imad & Khan, Imran & Cheng, Jinhua & Ali, Hashmat, 2019. "Energy consumption and economic growth nexus: New evidence from Pakistan using asymmetric analysis," Energy, Elsevier, vol. 189(C).
    5. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    6. Ling, Zaili & Huang, Tao & Li, Jixiang & Zhou, Sheng & Lian, Lulu & Wang, Jinxiang & Zhao, Yuan & Mao, Xiaoxuan & Gao, Hong & Ma, Jianmin, 2019. "Sulfur dioxide pollution and energy justice in Northwestern China embodied in West-East Energy Transmission of China," Applied Energy, Elsevier, vol. 238(C), pages 547-560.
    7. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    8. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Ouyang, Xiao & Xu, Zihan & Fan, Weiguo & Wei, Hejie & Song, Weize, 2021. "Regional embodied Water-Energy-Carbon efficiency of China," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Qinghua & Liu, Xuan & Zhang, Lina & Chiu, Yung-ho, 2024. "Temporal-spatial evolution of environmental inequality of embodied energy transfer within inter-provincial trade of China," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    2. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    3. Pang, Qinghua & Liu, Xuan & Zhang, Lina & Chiu, Yung-ho, 2024. "Temporal-spatial evolution of environmental inequality of embodied energy transfer within inter-provincial trade of China," Energy, Elsevier, vol. 299(C).
    4. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Xu, Guangyue & Yang, Hualiu & Schwarz, Peter, 2022. "A strengthened relationship between electricity and economic growth in China: An empirical study with a structural equation model," Energy, Elsevier, vol. 241(C).
    6. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    7. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    8. Sen, Kanchan Kumar & Karmaker, Shamal Chandra & Hosan, Shahadat & Chapman, Andrew J. & Uddin, Md Kamal & Saha, Bidyut Baran, 2023. "Energy poverty alleviation through financial inclusion: Role of gender in Bangladesh," Energy, Elsevier, vol. 282(C).
    9. Gritli, Mohamed Ilyes & Charfi, Fatma Marrakchi, 2023. "The determinants of oil consumption in Tunisia: Fresh evidence from NARDL approach and asymmetric causality test," Energy, Elsevier, vol. 284(C).
    10. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    11. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    12. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    13. Namahoro, J.P. & Nzabanita, J. & Wu, Q., 2021. "The impact of total and renewable energy consumption on economic growth in lower and middle- and upper-middle-income groups: Evidence from CS-DL and CCEMG analysis," Energy, Elsevier, vol. 237(C).
    14. Hlalefang Khobai & Sanderson Abel & Pierre Le Roux, 2021. "A Review of the Nexus between Energy Consumption and Economic Growth in the BRICS Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 424-431.
    15. Li, Yiming & Solaymani, Saeed, 2021. "Energy consumption, technology innovation and economic growth nexuses in Malaysian," Energy, Elsevier, vol. 232(C).
    16. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    17. Husaini, Dzul Hadzwan & Lean, Hooi Hooi, 2022. "Renewable and non-renewable electricity-growth nexus in Asia: The role of private power plants and oil price threshold effect," Resources Policy, Elsevier, vol. 78(C).
    18. Jiang, Peng & Klemeš, Jiří Jaromír & Fan, Yee Van & Fu, Xiuju & Tan, Raymond R. & You, Siming & Foley, Aoife M., 2021. "Energy, environmental, economic and social equity (4E) pressures of COVID-19 vaccination mismanagement: A global perspective," Energy, Elsevier, vol. 235(C).
    19. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2021. "The energy-water nexus of China’s interprovincial and seasonal electric power transmission," Applied Energy, Elsevier, vol. 286(C).
    20. Liu, Fangmei & Li, Li & Liang, Gemin & Huang, Liqiao & Gao, Wei, 2022. "National water footprints and embodied environmental consequences of major economic sectors-a case study of Japan," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 30-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222012075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.