Wind Power Interval Prediction via an Integrated Variational Empirical Decomposition Deep Learning Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tahmasebifar, Reza & Moghaddam, Mohsen Parsa & Sheikh-El-Eslami, Mohammad Kazem & Kheirollahi, Reza, 2020. "A new hybrid model for point and probabilistic forecasting of wind power," Energy, Elsevier, vol. 211(C).
- Dinh Thanh Viet & Vo Van Phuong & Minh Quan Duong & Quoc Tuan Tran, 2020. "Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms," Energies, MDPI, vol. 13(11), pages 1-22, June.
- Korprasertsak, Natapol & Leephakpreeda, Thananchai, 2019. "Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models," Energy, Elsevier, vol. 180(C), pages 387-397.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhiyan Zhang & Aobo Deng & Zhiwen Wang & Jianyong Li & Hailiang Zhao & Xiaoliang Yang, 2024. "Wind Power Prediction Based on EMD-KPCA-BiLSTM-ATT Model," Energies, MDPI, vol. 17(11), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tsao, Hao-Han & Leu, Yih-Guang & Chou, Li-Fen, 2021. "A center-of-concentrated-based prediction interval for wind power forecasting," Energy, Elsevier, vol. 237(C).
- Periklis Gogas & Theophilos Papadimitriou, 2023. "Machine Learning in Renewable Energy," Energies, MDPI, vol. 16(5), pages 1-3, February.
- Yang, Hufang & Jiang, Ping & Wang, Ying & Li, Hongmin, 2022. "A fuzzy intelligent forecasting system based on combined fuzzification strategy and improved optimization algorithm for renewable energy power generation," Applied Energy, Elsevier, vol. 325(C).
- Yiyang Sun & Xiangwen Wang & Junjie Yang, 2022. "Modified Particle Swarm Optimization with Attention-Based LSTM for Wind Power Prediction," Energies, MDPI, vol. 15(12), pages 1-17, June.
- Xiaodong Ji & Minjun Zhang & Yuanyuan Qu & Hai Jiang & Miao Wu, 2021. "Travel Dynamics Analysis and Intelligent Path Rectification Planning of a Roadheader on a Roadway," Energies, MDPI, vol. 14(21), pages 1-21, November.
- Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
- Ali, Aliyuda, 2021. "Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns," Energy, Elsevier, vol. 229(C).
- Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).
- Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
- Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
- Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
- Xiaoxun, Zhu & Zixu, Xu & Yu, Wang & Xiaoxia, Gao & Xinyu, Hang & Hongkun, Lu & Ruizhang, Liu & Yao, Chen & Huaxin, Liu, 2023. "Research on wind speed behavior prediction method based on multi-feature and multi-scale integrated learning," Energy, Elsevier, vol. 263(PA).
- Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
- Li, Yanting & Wu, Zhenyu & Su, Yan, 2023. "Adaptive short-term wind power forecasting with concept drifts," Renewable Energy, Elsevier, vol. 217(C).
- Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
- Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
- Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
- Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
More about this item
Keywords
wind power; forecasting; temporal convolutional networks; variational mode decomposition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6114-:d:1113697. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.