IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5593-d1104398.html
   My bibliography  Save this article

Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth

Author

Listed:
  • Chunyu Li

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Zhichao Wang

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Yutao Xu

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Jingfei Sun

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Xinyi Ruan

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Xuanwen Mao

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Xiangyun Hu

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Peng Liu

    (Botany Laboratory, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China)

Abstract

To solve the problem of soil degradation in coastal saline–alkali land, three different types of biochar (rice straw biochar, magnetic biochar, and humic acid–magnetic biochar) were prepared to remedy the saline–alkali soil under different mixing ratios. The effects of biochar on the growth of crops in saline–alkali soil were explored through a pot experiment on Chinese cabbage. The experimental results showed that the soil leaching treatment combined with humic acid–magnetic biochar could effectively repair the coastal saline–alkali soil. After adding 5% humic acid–magnetic biochar, the content of soil organic matter was 33.95 g/kg, the water content was 13.85%, and the contents of available phosphorus and available potassium were 9.43 mg/kg and 29.51 mg/kg. After adding 5% humic acid–magnetic biochar, the plant height of Chinese cabbage was 9.16 ± 0.19 cm, and the plant germination rate reached 83.33 ± 5.54%. The incorporation of biochar could effectively increase the chlorophyll content and soluble protein content of pakchoi and reduce the soluble sugar content of pakchoi. The study analyzed the effect of different modified biochar on saline–alkali land restoration and crop growth and explored the action rule of hydrochloric acid magnetic biochar on saline–alkali land restoration, which has important practical value for improving coastal saline–alkali land.

Suggested Citation

  • Chunyu Li & Zhichao Wang & Yutao Xu & Jingfei Sun & Xinyi Ruan & Xuanwen Mao & Xiangyun Hu & Peng Liu, 2023. "Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5593-:d:1104398
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylwia Lew & Katarzyna Glińska-Lewczuk & Paweł Burandt & Klaudia Kulesza & Szymon Kobus & Krystian Obolewski, 2022. "Salinity as a Determinant Structuring Microbial Communities in Coastal Lakes," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    2. Pablo Rugero Magalhães Dourado & Edivan Rodrigues de Souza & Monaliza Alves dos Santos & Cintia Maria Teixeira Lins & Danilo Rodrigues Monteiro & Martha Katharinne Silva Souza Paulino & Bruce Schaffer, 2022. "Stomatal Regulation and Osmotic Adjustment in Sorghum in Response to Salinity," Agriculture, MDPI, vol. 12(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Raj Gheyi & Devinder Sandhu & Claudivan Feitosa de Lacerda, 2023. "Fields of the Future: Pivotal Role of Biosaline Agriculture in Farming," Agriculture, MDPI, vol. 13(9), pages 1-5, September.
    2. María del Pino Palacios-Diaz & Juan Ramón Fernández-Vera & Jose Manuel Hernández-Moreno & Regla Amorós & Vanessa Mendoza-Grimón, 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    3. Kinga Zatoń-Sieczka & Elżbieta Bogusławska-Wąs & Przemysław Czerniejewski & Adam Brysiewicz & Adam Tański, 2022. "Habitat Conditions of the Microbiota in Ballast Water of Ships Entering the Oder Estuary," IJERPH, MDPI, vol. 19(23), pages 1-13, November.
    4. Carla Ingryd Nojosa Lessa & Claudivan Feitosa de Lacerda & Cláudio Cesar de Aguiar Cajazeiras & Antonia Leila Rocha Neves & Fernando Bezerra Lopes & Alexsandro Oliveira da Silva & Henderson Castelo So, 2023. "Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region," Agriculture, MDPI, vol. 13(3), pages 1-22, February.
    5. Ruixia Chen & Lijian Zheng & Jinjiang Zhao & Juanjuan Ma & Xufeng Li, 2023. "Biochar Application Maintains Photosynthesis of Cabbage by Regulating Stomatal Parameters in Salt-Stressed Soil," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    6. Mădălina Trușcă & Ștefania Gâdea & Roxana Vidican & Vlad Stoian & Anamaria Vâtcă & Claudia Balint & Valentina Ancuța Stoian & Melinda Horvat & Sorin Vâtcă, 2023. "Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    7. Mirosław Grzybowski & Paweł Burandt & Katarzyna Glińska-Lewczuk & Sylwia Lew & Krystian Obolewski, 2022. "Response of Macrophyte Diversity in Coastal Lakes to Watershed Land Use and Salinity Gradient," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    8. Takalani Mulaudzi & Mulisa Nkuna & Gershwin Sias & Ibrahima Zan Doumbia & Njagi Njomo & Emmanuel Iwuoha, 2022. "Antioxidant Capacity of Chitosan on Sorghum Plants under Salinity Stress," Agriculture, MDPI, vol. 12(10), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5593-:d:1104398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.