IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5280-d1099082.html
   My bibliography  Save this article

Reform of Electrical Engineering Undergraduate Teaching and the Curriculum System in the Context of the Energy Internet

Author

Listed:
  • Dongdong Zhang

    (School of Electrical Engineering, Guangxi University, Nanning 530021, China)

  • Cunhao Rong

    (School of Electrical Engineering, Guangxi University, Nanning 530021, China)

  • Hui Hwang Goh

    (School of Electrical Engineering, Guangxi University, Nanning 530021, China)

  • Hui Liu

    (School of Electrical Engineering, Guangxi University, Nanning 530021, China)

  • Xiang Li

    (School of Electrical Engineering, Guangxi University, Nanning 530021, China)

  • Hongyu Zhu

    (School of Electrical Engineering, Guangxi University, Nanning 530021, China)

  • Thomas Wu

    (School of Electrical Engineering, Guangxi University, Nanning 530021, China)

Abstract

After the concept of the Energy Internet was proposed in the last century, it has become a topic of great interest in recent years with the development of related technologies and the growing environmental problems. At the same time, the new technology brought by it also poses new challenges for the electrical engineering specialty, which is inseparable from power plants, power grids and other power facilities. How to reform the electrical engineering specialty to better meet the challenges it brings has become a problem that cannot be ignored. This paper comprehensively analyzes the current development status of the Energy Internet, key technologies involved in the concept of the Energy Internet, and problems in current talent training. This paper proposes to carry out curriculum reform through two main lines and to further optimize the curriculum structure, thus forming a more reasonable training program.

Suggested Citation

  • Dongdong Zhang & Cunhao Rong & Hui Hwang Goh & Hui Liu & Xiang Li & Hongyu Zhu & Thomas Wu, 2023. "Reform of Electrical Engineering Undergraduate Teaching and the Curriculum System in the Context of the Energy Internet," Sustainability, MDPI, vol. 15(6), pages 1-37, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5280-:d:1099082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fanding Xiang & Haomiao Cheng & Yi Wang, 2023. "Exploring the Smart Street Management and Control Platform from the Perspective of Sustainability: A Study of Five Typical Chinese Cities," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    2. Hoang, Anh Tuan & Sandro Nižetić, & Olcer, Aykut I. & Ong, Hwai Chyuan & Chen, Wei-Hsin & Chong, Cheng Tung & Thomas, Sabu & Bandh, Suhaib A. & Nguyen, Xuan Phuong, 2021. "Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications," Energy Policy, Elsevier, vol. 154(C).
    3. Satoshi Sano & Naoki Saito & Davisi Boontharm, 2023. "The Potential of Small Wooden-Frame Building in Aging Japan," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    4. Casparus J. R. Verbeek & De Wet Van der Merwe & James M. Bier, 2023. "A Lifecycle Assessment of Meat Processing Products Made from Protein-Based Thermoplastics," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    5. Biyun Chen & Qi Xu & Zhuoli Zhao & Xiaoxuan Guo & Yongjun Zhang & Jingmin Chi & Canbing Li, 2023. "A Prosumer Power Prediction Method Based on Dynamic Segmented Curve Matching and Trend Feature Perception," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    6. Philomina Mamley Adantey Arthur & Yacouba Konaté & Boukary Sawadogo & Gideon Sagoe & Bismark Dwumfour-Asare & Issahaku Ahmed & Richard Bayitse & Kofi Ampomah-Benefo, 2023. "Evaluating the Potential of Renewable Energy Sources in a Full-Scale Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Wastewater in Ghana," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    7. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    8. Seunghwan Myeong & Jaehyun Park & Minhyung Lee, 2022. "Research Models and Methodologies on the Smart City: A Systematic Literature Review," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
    9. Jack Li, 2022. "Using Flowchart to Help Students Learn Basic Circuit Theories Quickly," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    10. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Georgios Fotis & Vasiliki Vita, 2023. "Technical and Economic Analysis of Solar PV/Diesel Generator Smart Hybrid Power Plant Using Different Battery Storage Technologies for SRM IST, Delhi-NCR Campus," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    11. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    12. Jungsuk Kim & Mengxi Wang & Donghyun Park & Cynthia Castillejos Petalcorin, 2021. "Fiscal policy and economic growth: some evidence from China," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 157(3), pages 555-582, August.
    13. Simon Pezzutto & Giulio Quaglini & Philippe Riviere & Lukas Kranzl & Antonio Novelli & Andrea Zambito & Luigi Bottecchia & Eric Wilczynski, 2023. "Process Cooling Market in Europe: Assessment of the Final Energy Consumption for the Year 2016," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    14. Meng Qi & Xin Dai & Bei Zhang & Junjie Li & Bangfan Liu, 2023. "The Evolution and Future Prospects of China’s Wave Energy Policy from the Perspective of Renewable Energy: Facing Problems, Governance Optimization and Effectiveness Logic," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    15. Berardi, Umberto & Jafarpur, Pouriya, 2020. "Assessing the impact of climate change on building heating and cooling energy demand in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    17. Amith Khandakar & Muhammad E. H. Chowdhury & Md. Saifuddin Khalid & Nizar Zorba, 2022. "Case Study of Multi-Course Project-Based Learning and Online Assessment in Electrical Engineering Courses during COVID-19 Pandemic," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    18. Esmanur Uçal & Hasan Yildizhan & Arman Ameen & Zafer Erbay, 2023. "Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2021. "Design and game-Theoretic analysis of community-Based market mechanisms in heat and electricity systems," Omega, Elsevier, vol. 99(C).
    2. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    3. Alina Ștefania Chenic & Alin Ioan Cretu & Adrian Burlacu & Nicolae Moroianu & Daniela Vîrjan & Dragos Huru & Mihaela Roberta Stanef-Puica & Vladimir Enachescu, 2022. "Logical Analysis on the Strategy for a Sustainable Transition of the World to Green Energy—2050. Smart Cities and Villages Coupled to Renewable Energy Sources with Low Carbon Footprint," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    4. Aleksandar Ivančić & Joaquim Romaní & Jaume Salom & Maria-Victoria Cambronero, 2021. "Performance Assessment of District Energy Systems with Common Elements for Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-22, April.
    5. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    6. De Jaeger, Ina & Reynders, Glenn & Ma, Yixiao & Saelens, Dirk, 2018. "Impact of building geometry description within district energy simulations," Energy, Elsevier, vol. 158(C), pages 1060-1069.
    7. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    8. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    9. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    11. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    12. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    13. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    14. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    15. Larisa Gorina & Marina Gordova & Irina Khristoforova & Lyudmila Sundeeva & Wadim Strielkowski, 2023. "Sustainable Education and Digitalization through the Prism of the COVID-19 Pandemic," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    16. Juan Tang & Fangming Qin, 2022. "Analyzing the impact of local government competition on green total factor productivity from the factor market distortion perspective: based on the three stage DEA model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14298-14326, December.
    17. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    18. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    19. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    20. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5280-:d:1099082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.