IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4571-d1087219.html
   My bibliography  Save this article

Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina platensis Cultivation

Author

Listed:
  • Ángela Sánchez-Quintero

    (APESA, Pôle Valorisation, 64121 Montardon, France)

  • Marie-Ange Leca

    (APESA, Pôle Valorisation, 64121 Montardon, France)

  • Simona Bennici

    (Institut de Science des Matériaux de Mulhouse (IS2M—UMR CNRS UHA 7361), Axe Transports, Réactivité, Matériaux pour des Procédés Propres (TRM2P), Université de Haute Alsace (UHA), 68093 Mulhouse, France)

  • Lionel Limousy

    (Institut de Science des Matériaux de Mulhouse (IS2M—UMR CNRS UHA 7361), Axe Transports, Réactivité, Matériaux pour des Procédés Propres (TRM2P), Université de Haute Alsace (UHA), 68093 Mulhouse, France)

  • Florian Monlau

    (APESA, Pôle Valorisation, 64121 Montardon, France
    Total Energies, PERL—Pôle D′Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47–RD 817, 64170 Lacq, France)

  • Jean-Baptiste Beigbeder

    (APESA, Pôle Valorisation, 64121 Montardon, France)

Abstract

The increased production of biogas through the anaerobic digestion (AD) process has raised several concerns regarding the management of liquid digestate, which can present some environmental risks if not properly handled. Among the different techniques to treat AD digestate, microalgae and cyanobacteria cultivation has emerged as a sustainable approach to valorizing digestate while producing valuable biomass for production of biofuels and high value bioproducts. However, the intrinsic parameters of the liquid digestate can strongly limit the microalgae or cyanobacteria growth as well as limit the uptake of residual nutrients. In this study, the detoxification potential of activated carbon (AC) was evaluated on agro-industrial liquid digestate prior to Spirulina platensis cultivation. Different doses of AC, ranging from 5 to 100 g/L, were tested during adsorption experiments in order to determine the adsorption capacity as well as the removal efficiency of several compounds. Experimental results showed the high reactivity of AC, especially towards phosphate (PO 4 -P), total phenol (TP) and chemical oxygen demand (COD). At a dosage of 50 g/L, the AC pretreatment successfully achieved 54.7%, 84.7% and 50.0% COD, TP and PO 4 -P removal, corresponding to adsorption capacity of 94.7 mgDCO/g, 17.9 mgTP/g and 8.7 mgPO 4 -P/g, respectively. Even if the AC pretreatment did not show significant effects on Spirulina platensis growth during toxicity assays, the AC adsorption step strongly participated in the digestate detoxification by removing hardly biodegradable molecules such as phenolic compounds.

Suggested Citation

  • Ángela Sánchez-Quintero & Marie-Ange Leca & Simona Bennici & Lionel Limousy & Florian Monlau & Jean-Baptiste Beigbeder, 2023. "Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina platensis Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4571-:d:1087219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parsy, A. & Monlau, F. & Guyoneaud, R. & Sambusiti, C., 2024. "Nutrient recovery in effluents from the energy sectors for microalgae and cyanobacteria biomass production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Louhasakul, Yasmi & Cheirsilp, Benjamas & Maneerat, Suppasil & Prasertsan, Poonsuk, 2019. "Potential use of flocculating oleaginous yeasts for bioconversion of industrial wastes into biodiesel feedstocks," Renewable Energy, Elsevier, vol. 136(C), pages 1311-1319.
    5. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    6. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    7. Abomohra, Abd El-Fatah & Jin, Wenbiao & Sagar, Vikram & Ismail, Gehan A., 2018. "Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery," Renewable Energy, Elsevier, vol. 115(C), pages 880-886.
    8. Banerjee, Rintu & Kumar, S.P. Jeevan & Mehendale, Ninad & Sevda, Surajbhan & Garlapati, Vijay Kumar, 2019. "Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 548-558.
    9. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    10. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    11. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Zheng, Heshan & Wang, Yu & Li, Shuo & Nagarajan, Dillirani & Varjani, Sunita & Lee, Duu-Jong & Chang, Jo-Shu, 2022. "Recent advances in lutein production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Ogbonna, Christiana N. & Nwoba, Emeka G., 2021. "Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Li, Shuangxi & Hu, Tianyi & Xu, Yanzhe & Wang, Jingyi & Chu, Ruoyu & Yin, Zhihong & Mo, Fan & Zhu, Liandong, 2020. "A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    19. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    20. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4571-:d:1087219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.