IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4550-d1086866.html
   My bibliography  Save this article

From Geomimetic to Biomimetic Manufacturing: Digitally Transforming Industry for Sustainability

Author

Listed:
  • Gregory C. Unruh

    (School of Integrative Studies, George Mason University, Fairfax, VA 22030, USA)

Abstract

Digital technologies and Industry 4.0 hold the prospect of improving the sustainability performance of manufacturing, but the environmental implications of this transformation are uncertain. To contribute to resolving the environmental impacts of production, Industry 4.0 needs to be guided by sustainable manufacturing principles. This article asserts that we have access to only one functioning example of sustainable production on planet Earth, which is nature, and that Industry 4.0 guided by natural biomimetic principles can advance sustainable production goals. It first contends that industry to date has been guided geomimetic principles—which is the industrial mimicking of physical geologic processes—and that geomimicry is a source of many environmental externalities arising from industrial production. The paper then introduces a series of nature-inspired, biomimetic principles that can be facilitated by the unique capabilities inherent in emerging digital production technologies.

Suggested Citation

  • Gregory C. Unruh, 2023. "From Geomimetic to Biomimetic Manufacturing: Digitally Transforming Industry for Sustainability," Sustainability, MDPI, vol. 15(5), pages 1-11, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4550-:d:1086866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hayes, Samantha & Desha, Cheryl & Baumeister, Dayna, 2020. "Learning from nature – Biomimicry innovation to support infrastructure sustainability and resilience," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    2. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    3. Gebler, Malte & Schoot Uiterkamp, Anton J.M. & Visser, Cindy, 2014. "A global sustainability perspective on 3D printing technologies," Energy Policy, Elsevier, vol. 74(C), pages 158-167.
    4. Jabbour, Charbel Jose Chiappetta & Jabbour, Ana Beatriz Lopes de Sousa & Sarkis, Joseph & Filho, Moacir Godinho, 2019. "Unlocking the circular economy through new business models based on large-scale data: An integrative framework and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 546-552.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    2. Biman Darshana Hettiarachchi & Stefan Seuring & Marcus Brandenburg, 2022. "Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis," Operations Management Research, Springer, vol. 15(3), pages 858-878, December.
    3. Lai, Kee-hung & Feng, Yunting & Zhu, Qinghua, 2023. "Digital transformation for green supply chain innovation in manufacturing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    5. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    6. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    7. Ghimire, Narishwar & Woodward, Richard T., 2013. "Under- and over-use of pesticides: An international analysis," Ecological Economics, Elsevier, vol. 89(C), pages 73-81.
    8. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    9. Raffin, Natacha & Seegmuller, Thomas, 2014. "Longevity, pollution and growth," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 22-33.
    10. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    11. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    12. Alkaraan, Fadi & Elmarzouky, Mahmoud & Hussainey, Khaled & Venkatesh, V.G., 2023. "Sustainable strategic investment decision-making practices in UK companies: The influence of governance mechanisms on synergy between industry 4.0 and circular economy," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    13. Daniel Fiorino, 2011. "Explaining national environmental performance: approaches, evidence, and implications," Policy Sciences, Springer;Society of Policy Sciences, vol. 44(4), pages 367-389, November.
    14. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    15. Thomas Longden, 2014. "Going Forward by Looking Backwards on the Environmental Kuznets Curve: an Analysis of CFCs, CO2 and the Montreal and Kyoto Protocols," Working Papers 2014.74, Fondazione Eni Enrico Mattei.
    16. Maurizio Lisciandra & Carlo Migliardo, 2017. "An Empirical Study of the Impact of Corruption on Environmental Performance: Evidence from Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 297-318, October.
    17. Yicong Lin & Hanno Reuvers, 2020. "Cointegrating Polynomial Regressions with Power Law Trends: Environmental Kuznets Curve or Omitted Time Effects?," Papers 2009.02262, arXiv.org, revised Dec 2021.
    18. Dmitriy Grigorievich Rodionov* & Evgenii Alexandrovich Konnikov & Olga Anatolievna Konnikova, 2018. "Approaches to Ensuring the Sustainability of Industrial Enterprises of Different Technological Levels," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 277-282:3.
    19. Tamazian, Artur & Bhaskara Rao, B., 2010. "Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies," Energy Economics, Elsevier, vol. 32(1), pages 137-145, January.
    20. Masao Tsujimoto, 2023. "Public Utilities Corporate Growth and Environmental Conservation: Evidence from Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 404-422, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4550-:d:1086866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.