IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3551-d1069010.html
   My bibliography  Save this article

Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China

Author

Listed:
  • Haiyang Jiang

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China
    No.1 Institute of Geology and Mineral Resource Exploration of Shandong Province, Jinan 250010, China
    Shandong Engineering Laboratory for High-Grade Iron Ore Exploration and Exploitation, Jinan 250010, China)

  • Liangliang Guo

    (College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Fengxin Kang

    (801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology and Mineral Resources (SPBGM), Jinan 250014, China
    College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China)

  • Fugang Wang

    (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China)

  • Yanling Cao

    (No.1 Institute of Geology and Mineral Resource Exploration of Shandong Province, Jinan 250010, China
    Shandong Engineering Laboratory for High-Grade Iron Ore Exploration and Exploitation, Jinan 250010, China)

  • Zhe Sun

    (Tianjin Branch, CNOOC China Ltd., Tianjin 300459, China)

  • Meng Shi

    (Shandong No.3 Exploration Institute of Geology and Mineral Resources, Yantai 264000, China)

Abstract

Super-thick shallow granites without a cap layer are widely distributed in the Wendeng geothermal field. To evaluate the field’s productivity potential for an enhanced geothermal system (EGS), we carried out field tests, laboratory tests and numerical simulations in succession. The geothermal characteristics and deep rock mechanical properties were identified based on real geological and core data from the borehole ZK1 in Wendeng geothermal field. Then, a numerical model of reservoir hydraulic fracturing based on a discrete fracture network was established. Thermal extraction simulations were then conducted to assess the long-term productivity of an EGS project based on the fracturing results. Possible well layout patterns and operational parameters were considered. Results indicated that, for naturally fractured formations, large well spacings should be used and reservoirs with overdeveloped natural fractures should not be selected. For the same reservoir, created by stimulation, the production performances of five-spot and triplet-well modes were different. The pressure indicator was more sensitive to the choice of well layout mode than the temperature indicator. The power generation of the five-spot well mode was slightly improved above that of the triplet-well mode. When selecting the target reservoir, the formations with high temperatures, moderate natural fractures, and high in-situ stress shielding are preferable. On this basis, a large volume of fracturing fluids should be injected to stimulate the reservoir, making the reservoir length and width as large as possible. If the desired large-scale reservoir is created, the five-point well mode should be selected.

Suggested Citation

  • Haiyang Jiang & Liangliang Guo & Fengxin Kang & Fugang Wang & Yanling Cao & Zhe Sun & Meng Shi, 2023. "Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3551-:d:1069010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    2. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    3. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    4. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    5. Cheng, Wen-Long & Wang, Chang-Long & Nian, Yong-Le & Han, Bing-Bing & Liu, Jian, 2016. "Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses," Energy, Elsevier, vol. 115(P1), pages 274-288.
    6. Zeng, Yu-Chao & Su, Zheng & Wu, Neng-You, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field," Energy, Elsevier, vol. 56(C), pages 92-107.
    7. Zhihong Lei & Yanjun Zhang & Zhongjun Hu & Liangzhen Li & Senqi Zhang & Lei Fu & Gaofan Yue, 2019. "Application of Water Fracturing in Geothermal Energy Mining: Insights from Experimental Investigations," Energies, MDPI, vol. 12(11), pages 1-22, June.
    8. Hofmann, Hannes & Babadagli, Tayfun & Zimmermann, Günter, 2014. "Hot water generation for oil sands processing from enhanced geothermal systems: Process simulation for different hydraulic fracturing scenarios," Applied Energy, Elsevier, vol. 113(C), pages 524-547.
    9. Yuan Zhao & Lingfeng Shu & Shunyi Chen & Jun Zhao & Liangliang Guo, 2022. "Optimization Design of Multi-Factor Combination for Power Generation from an Enhanced Geothermal System by Sensitivity Analysis and Orthogonal Test at Qiabuqia Geothermal Area," Sustainability, MDPI, vol. 14(12), pages 1-35, June.
    10. Lei, Zhihong & Zhang, Yanjun & Zhang, Senqi & Fu, Lei & Hu, Zhongjun & Yu, Ziwang & Li, Liangzhen & Zhou, Jian, 2020. "Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China: Slickwater fracturing treatments for different reservoir scenarios," Renewable Energy, Elsevier, vol. 145(C), pages 65-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Zhao & Lingfeng Shu & Shunyi Chen & Jun Zhao & Liangliang Guo, 2022. "Optimization Design of Multi-Factor Combination for Power Generation from an Enhanced Geothermal System by Sensitivity Analysis and Orthogonal Test at Qiabuqia Geothermal Area," Sustainability, MDPI, vol. 14(12), pages 1-35, June.
    2. Han, Songcai & Cheng, Yuanfang & Gao, Qi & Yan, Chuanliang & Zhang, Jincheng, 2020. "Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 149(C), pages 1214-1226.
    3. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    4. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    6. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    7. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
    8. Xue, Yi & Liu, Shuai & Chai, Junrui & Liu, Jia & Ranjith, P.G. & Cai, Chengzheng & Gao, Feng & Bai, Xue, 2023. "Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems," Applied Energy, Elsevier, vol. 337(C).
    9. Wang, Yang & Li, Tuo & Chen, Yun & Ma, Guowei, 2019. "Numerical analysis of heat mining and geological carbon sequestration in supercritical CO2 circulating enhanced geothermal systems inlayed with complex discrete fracture networks," Energy, Elsevier, vol. 173(C), pages 92-108.
    10. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    11. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    12. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    13. Yuchao Zeng & Liansheng Tang & Nengyou Wu & Jing Song & Yifei Cao, 2017. "Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field," Energies, MDPI, vol. 10(12), pages 1-17, December.
    14. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2020. "Experimental research on the permeability of fractured-subsequently-filled granite under high temperature-high pressure and the application to HDR geothermal mining," Renewable Energy, Elsevier, vol. 153(C), pages 499-508.
    15. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.
    16. Zhixue Sun & Ying Xin & Jun Yao & Kai Zhang & Li Zhuang & Xuchen Zhu & Tong Wang & Chuanyin Jiang, 2018. "Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model," Energies, MDPI, vol. 11(2), pages 1-19, January.
    17. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    18. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    19. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).
    20. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3551-:d:1069010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.