IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3503-d1068208.html
   My bibliography  Save this article

Spatiotemporal Dynamics of Vegetation Index in an Oasis-Desert Transition Zone and Relationship with Environmental Factors

Author

Listed:
  • Jiaqi Lu

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Xifeng Zhang

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
    Key Laboratory of Resource Environment and Sustainable Development of Oasis, Northwest Normal University, Lanzhou 730070, China)

  • Shuiming Liang

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Xiaowei Cui

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

Abstract

The oasis-desert transition zone (TZ) is an ecological buffer zone between a mobile desert and an oasis, which are important in reducing the forward mobility of sand dunes and wind and sand hazards in an oasis. In this study, the Dunhuang Oasis and its TZ in the Hexi Corridor (China) were examined. Based on the annual normalized vegetation index (NDVI) at each buffer distance of the TZ from 1987 to 2015, combing the watershed hydrology, oasis crop cultivation structure and industrial economic status, partial least squares regression models and a correlation analysis were used to examine the spatial and temporal changes in the vegetation gradient of the oasis TZ and the factors influencing those changes. (1) Spatially, the NDVI values in the TZ generally decreased gradually before stabilizing with a buffer distance (average decrease of 0.01–0.03 per 300 m). (2) Temporally, the mean values of the NDVI in the TZ show an overall wavelike variation across years. The annual average maximum NDVI value was 0.11 in 1987, whereas the annual average minimum value was 0.07 in 2014. (3) During the 1987–2015, runoff, tourist populations and water consumption for orchards were significantly and positively correlated with the NDVI; the year-end arable land area and the total industrial output value were significantly and negatively correlated with the NDVI; the rural per capita net income and water consumption for grain planting were not significantly and positively correlated with the NDVI; water consumption for the sum of vegetable and melon planting, water consumption for cotton planting, urbanization and rural populations were not significantly and negatively correlated with the NDVI. (4) The farm TZ NDVI is more strongly influenced by human activities than the undisturbed natural TZ.

Suggested Citation

  • Jiaqi Lu & Xifeng Zhang & Shuiming Liang & Xiaowei Cui, 2023. "Spatiotemporal Dynamics of Vegetation Index in an Oasis-Desert Transition Zone and Relationship with Environmental Factors," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3503-:d:1068208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Kuzevic & Diana Bobikova & Zofia Kuzevicova, 2022. "Land Cover and Vegetation Coverage Changes in the Mining Area—A Case Study from Slovakia," Sustainability, MDPI, vol. 14(3), pages 1-14, January.
    2. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    3. Jing Huang & Dongqian Xue & Chuansheng Wang & Jiehu Chen, 2022. "Resource and Environmental Pressures on the Transformation of Planting Industry in Arid Oasis," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    4. Zhang, Xifeng & Zhang, Lanhui & He, Chansheng & Li, Jinlin & Jiang, Yiwen & Ma, Libang, 2014. "Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China – A case study of the Dunhuang oasis," Agricultural Water Management, Elsevier, vol. 146(C), pages 270-279.
    5. Shijie Zhou & Yiqiang Dong & Asitaiken Julihaiti & Tingting Nie & Anjing Jiang & Shazhou An, 2022. "Spatial Variation in Desert Spring Vegetation Biomass, Richness and Their Environmental Controls in the Arid Region of Central Asia," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    6. Sinan Wang & Wenjun Wang & Yingjie Wu & Shuixia Zhao, 2022. "Surface Soil Moisture Inversion and Distribution Based on Spatio-Temporal Fusion of MODIS and Landsat," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    2. Yi Liu & Jie Xue & Dongwei Gui & Jiaqiang Lei & Huaiwei Sun & Guanghui Lv & Zhiwei Zhang, 2018. "Agricultural Oasis Expansion and Its Impact on Oasis Landscape Patterns in the Southern Margin of Tarim Basin, Northwest China," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    3. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    4. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    5. Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Li, Jiang & Mao, Xiaomin & Li, Mo, 2017. "Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS," Agricultural Water Management, Elsevier, vol. 179(C), pages 338-351.
    7. Gao, Yukun & Zhao, Hongfang & Zhao, Chuang & Hu, Guohua & Zhang, Han & Liu, Xue & Li, Nan & Hou, Haiyan & Li, Xia, 2022. "Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
    9. Lian, Jinjiao & Huang, Mingbin, 2016. "Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region," Agricultural Water Management, Elsevier, vol. 165(C), pages 153-162.
    10. Zhang, Chenglong & Guo, Ping, 2018. "FLFP: A fuzzy linear fractional programming approach with double-sided fuzziness for optimal irrigation water allocation," Agricultural Water Management, Elsevier, vol. 199(C), pages 105-119.
    11. Xiaoping Zhang & Xinyi Wang & Zihong Hu & Juncai Xu, 2023. "Landscape Pattern Changes and Climate Response in Nagqu Hangcuo National Wetland Park in the Tibetan Plateau," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    12. Honghui Zhu & Meiling Du & Xiaojun Yin, 2023. "Oasification in Arid and Semi-Arid Regions of China: New Changes and Re-Examination," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    13. Liu Liu & Zezhong Guo & Guanhua Huang & Ruotong Wang, 2019. "Water Productivity Evaluation under Multi-GCM Projections of Climate Change in Oases of the Heihe River Basin, Northwest China," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    14. Lu, Zhixiang & Wei, Yongping & Xiao, Honglang & Zou, Songbing & Ren, Juan & Lyle, Clive, 2015. "Trade-offs between midstream agricultural production and downstream ecological sustainability in the Heihe River basin in the past half century," Agricultural Water Management, Elsevier, vol. 152(C), pages 233-242.
    15. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    16. Chenglong Zhang & Qiong Yue & Ping Guo, 2019. "A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    17. Xu, Xu & Jiang, Yao & Liu, Minghuan & Huang, Quanzhong & Huang, Guanhua, 2019. "Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin," Agricultural Water Management, Elsevier, vol. 211(C), pages 152-164.
    18. Tian, Xin & Dong, Jianzhi & Jin, Shuangyan & He, Hai & Yin, Hao & Chen, Xi, 2023. "Climate change impacts on regional agricultural irrigation water use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 281(C).
    19. Li, Zhou & Quan, Jin & Li, Xiao-Yan & Wu, Xiu-Chen & Wu, Hua-Wu & Li, Yue-Tan & Li, Guang-Yong, 2016. "Establishing a model of conjunctive regulation of surface water and groundwater in the arid regions," Agricultural Water Management, Elsevier, vol. 174(C), pages 30-38.
    20. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Du, Taisheng, 2013. "Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching," Agricultural Water Management, Elsevier, vol. 127(C), pages 85-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3503-:d:1068208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.