IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3296-d1064910.html
   My bibliography  Save this article

Forecast of Short-Term Passenger Flow in Multi-Level Rail Transit Network Based on a Multi-Task Learning Model

Author

Listed:
  • Fenling Feng

    (School of Traffic & Transportation Engineering, Central South University, Changsha 410083, China)

  • Zhaohui Zou

    (School of Traffic & Transportation Engineering, Central South University, Changsha 410083, China
    China National Railway Group Corporation, Beijing 100089, China)

  • Chengguang Liu

    (School of Traffic & Transportation Engineering, Central South University, Changsha 410083, China)

  • Qianran Zhou

    (China Railway Guangzhou Group Corporation, Guangzhou 510088, China)

  • Chang Liu

    (Guangdong Light Industry Polytechnic, Guangzhou 510300, China)

Abstract

With the refinement of the urban transportation network, more and more passengers choose the combined mode. To provide better inter-trip services, it is necessary to integrate and forecast the passenger flow of multi-level rail transit network to improve the connectivity of different transport modes. The difficulty of multi-level rail transit passenger flow prediction lies in the complexity of the spatiotemporal characteristics of the data, the different characteristics of passenger flow composition, and the difficulty of research. At present, most of the research focuses on one mode of transportation or the passenger flow within the city, while the comprehensive analysis of passenger flow under various modes of transportation is less. This study takes the key nodes of the multi-level rail transit railway hub as the research object, establishes a multi-task learning model, and forecasts the short-term passenger flow of rail transit by combining the trunk railway, intercity rail transit and subway. Different from the existing research, the model introduces convolution layer and multi-head attention mechanism to improve and optimize the Transformer multi-task learning framework, trains and processes the data of trunk railway, intercity railway, and subway as different tasks, and considers the correlation of passenger flow of trunk railway, intercity railway, and subway in the prediction. At the same time, a new residual network structure is introduced to solve the problems of over-fitting, gradient disappearance, and gradient explosion in the training process. Taking the large comprehensive transportation hub in Guangzhou metropolitan area as an example, the proposed multi-task learning model is evaluated. The improved Transformer has the highest prediction accuracy (Average prediction accuracy of passenger flow of three traffic modes) 88.569%, and others methods HA, FC-LSTM and STGCN are 81.579%, 82.230% and 81.761%, respectively. The results show that the proposed multi-task learning model has better prediction performance than the existing models.

Suggested Citation

  • Fenling Feng & Zhaohui Zou & Chengguang Liu & Qianran Zhou & Chang Liu, 2023. "Forecast of Short-Term Passenger Flow in Multi-Level Rail Transit Network Based on a Multi-Task Learning Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3296-:d:1064910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yaguan & Qin, Yong & Guo, Jianyuan & Cao, Zhiwei & Jia, Limin, 2022. "Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Tianyang Wang & Abd E.I.-Baset Hassanien, 2021. "An Intelligent Passenger Flow Prediction Method for Pricing Strategy and Hotel Operations," Complexity, Hindawi, vol. 2021, pages 1-11, March.
    3. Pengpeng Jiao & Ruimin Li & Tuo Sun & Zenghao Hou & Amir Ibrahim, 2016. "Three Revised Kalman Filtering Models for Short-Term Rail Transit Passenger Flow Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunfang Ma & Jose M. Sallan & Oriol Lordan, 2024. "Rail Transit Networks and Network Motifs: A Review and Research Agenda," Sustainability, MDPI, vol. 16(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    2. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    3. Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
    4. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. Chengguang Liu & Jiaqi Zhang & Xixi Luo & Yulin Yang & Chao Hu, 2023. "Railway Freight Demand Forecasting Based on Multiple Factors: Grey Relational Analysis and Deep Autoencoder Neural Networks," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    6. Li, Peng & Wu, Weitiao & Pei, Xiangjing, 2023. "A separate modelling approach for short-term bus passenger flow prediction based on behavioural patterns: A hybrid decision tree method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    7. Lu Zeng & Zinuo Li & Jie Yang & Xinyue Xu, 2022. "CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    8. Sun, He, 2023. "Deep Learning and Bayesian Calibration Approach to Hourly Passenger Occupancy Prediction in Beijing Metro: A Study Exploiting Cellular Data and Metro Conditions," DES - Working Papers. Statistics and Econometrics. WS 38783, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3296-:d:1064910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.