IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2823-d1057326.html
   My bibliography  Save this article

Effects of COVID-19 on Residential Planning and Design: A Scientometric Analysis

Author

Listed:
  • Qingchang Chen

    (Shanghai Institute of Technology, Shanghai 201418, China)

  • Zhuoyang Sun

    (Shanghai Institute of Technology, Shanghai 201418, China)

  • Wenjing Li

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

Abstract

Coronavirus disease has caused city blockades, making people spend longer in residential areas than ever before. Human well-being and health are directly affected by the suppression of the epidemic through residential planning and design. In this regard, scholars from all over the world have made significant efforts to explore the links between COVID-19 and residential planning and design, trying to adjust the states in time to cope with the effects of COVID-19 in the long run. This study is based on Bibliometrix to conduct a scientometric analysis of the literature on “Effects of COVID-19 on residential planning and design (ECRPD)” published in Web of Science and Scopus from 2019 to October 2022. The aim of this study is to comprehensively present the scientific knowledge of ECRPD research through general characteristics’ analysis, citation analysis, and horizontal conceptual structure analysis, and try to summarize how residential planning and design responds to COVID-19, so as to provide support and advice for urban planners, builders, and policy makers. According to the results, ECRPD research is growing significantly, and the scientific productivity of it has increased exponentially. The main effects and feedback are characterized by three aspects: residential environment, residential building space and planning space, and residential traffic and community management. Generally, ECRPD research has expanded beyond the disciplines of architecture and planning. Environmental and energy concerns have attracted the most attention, though practical research into residential building space is relatively limited. To fully deal with COVID-19’s multiple negative facets, it is imperative to promote cross-disciplinary and multi-field collaboration, implement new technologies and methods for traditional disciplines, develop bioclimatic buildings to cope with environmental changes, and strengthen practical research in residential building and planning to ensure that a sustainable and resilient living environment is created in the post-pandemic era.

Suggested Citation

  • Qingchang Chen & Zhuoyang Sun & Wenjing Li, 2023. "Effects of COVID-19 on Residential Planning and Design: A Scientometric Analysis," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2823-:d:1057326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    2. Ioana Boeraș & Angela Curtean-Bănăduc & Doru Bănăduc & Gabriela Cioca, 2022. "Anthropogenic Sewage Water Circuit as Vector for SARS-CoV-2 Viral ARN Transport and Public Health Assessment, Monitoring and Forecasting—Sibiu Metropolitan Area (Transylvania/Romania) Study Case," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    3. Muhammad Saidu Aliero & Muhammad Asif & Imran Ghani & Muhammad Fermi Pasha & Seung Ryul Jeong, 2022. "Systematic Review Analysis on Smart Building: Challenges and Opportunities," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
    4. Zhang, Xingxing & Pellegrino, Filippo & Shen, Jingchun & Copertaro, Benedetta & Huang, Pei & Kumar Saini, Puneet & Lovati, Marco, 2020. "A preliminary simulation study about the impact of COVID-19 crisis on energy demand of a building mix at a district in Sweden," Applied Energy, Elsevier, vol. 280(C).
    5. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    6. Robert J. W. Tijssen & Martijn S. Visser & Thed N. van Leeuwen, 2002. "Benchmarking international scientific excellence: Are highly cited research papers an appropriate frame of reference?," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 381-397, July.
    7. Aksnes, Dag W. & Schneider, Jesper W. & Gunnarsson, Magnus, 2012. "Ranking national research systems by citation indicators. A comparative analysis using whole and fractionalised counting methods," Journal of Informetrics, Elsevier, vol. 6(1), pages 36-43.
    8. Shima Hamidi & Sadegh Sabouri & Reid Ewing, 2020. "Does Density Aggravate the COVID-19 Pandemic?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 86(4), pages 495-509, October.
    9. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    10. Cheng-Li Cheng & Yen-Yu Lin, 2022. "CFD Numerical Simulation in Building Drainage Stacks as an Infection Pathway of COVID-19," IJERPH, MDPI, vol. 19(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    2. Pedro Albarrán & Antonio Perianes-Rodríguez & Javier Ruiz-Castillo, 2015. "Differences in citation impact across countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(3), pages 512-525, March.
    3. György Csomós & Zsófia Viktória Vida & Balázs Lengyel, 2020. "Exploring the changing geographical pattern of international scientific collaborations through the prism of cities," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    4. Ludo Waltman & Clara Calero-Medina & Joost Kosten & Ed C.M. Noyons & Robert J.W. Tijssen & Nees Jan Eck & Thed N. Leeuwen & Anthony F.J. Raan & Martijn S. Visser & Paul Wouters, 2012. "The Leiden ranking 2011/2012: Data collection, indicators, and interpretation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2419-2432, December.
    5. Torger Möller & Marion Schmidt & Stefan Hornbostel, 2016. "Assessing the effects of the German Excellence Initiative with bibliometric methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2217-2239, December.
    6. Huegel, Matthias, 2024. "University scientists’ multiple goals achievement: Social capital and its impact on research performance and research commercialization," Technovation, Elsevier, vol. 135(C).
    7. Thelwall, Mike, 2016. "The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 110-123.
    8. Albarrán, Pedro, 2012. "The measurement of scientific excellence around the world," UC3M Working papers. Economics we1208, Universidad Carlos III de Madrid. Departamento de Economía.
    9. Halbrügge, Stephanie & Buhl, Hans Ulrich & Fridgen, Gilbert & Schott, Paul & Weibelzahl, Martin & Weissflog, Jan, 2022. "How Germany achieved a record share of renewables during the COVID-19 pandemic while relying on the European interconnected power network," Energy, Elsevier, vol. 246(C).
    10. Fang, Da & Guo, Yan, 2022. "Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China," Research in Transportation Economics, Elsevier, vol. 93(C).
    11. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Luigi Fortuna & Arturo Buscarino, 2022. "Sustainable Energy Systems," Energies, MDPI, vol. 15(23), pages 1-7, December.
    14. Maribel Vega-Arce & Gonzalo Salas & Gastón Núñez-Ulloa & Cristián Pinto-Cortez & Ivelisse Torres Fernandez & Yuh-Shan Ho, 2019. "Research performance and trends in child sexual abuse research: a Science Citation Index Expanded-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1505-1525, December.
    15. Antonio-José Moreno-Guerrero & María Elena Parra-González & Jesús López-Belmonte & Adrián Segura-Robles, 2022. "Science mapping analysis of “cultural” in web of science (1908–2019)," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 239-257, February.
    16. Adela Toscano-Valle & Antonio Sianes & Francisco Santos-Carrillo & Luis A. Fernández-Portillo, 2022. "Can the Rational Design of International Institutions Solve Cooperation Problems? Insights from a Systematic Literature Review," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    17. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    18. Corsini, Alberto & Pezzoni, Michele, 2023. "Does grant funding foster research impact? Evidence from France," Journal of Informetrics, Elsevier, vol. 17(4).
    19. Albert Banal-Estañol & Qianshuo Liu & Inés Macho-Stadler & David Pérez-Castrillo, 2021. "Similar-to-me Effects in the Grant Application Process: Applicants, Panelists, and the Likelihood of Obtaining Funds," Working Papers 1289, Barcelona School of Economics.
    20. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2823-:d:1057326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.