IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2550-d1052683.html
   My bibliography  Save this article

Robust Power System State Estimation Method Based on Generalized M-Estimation of Optimized Parameters Based on Sampling

Author

Listed:
  • Yu Shi

    (Department of Science, Shandong Jiaotong University, Jinan 250353, China)

  • Yueting Hou

    (Department of Electrical Engineering, Shandong University, Jinan 250100, China)

  • Yue Yu

    (Department of Electrical Engineering, Shandong University, Jinan 250100, China)

  • Zhaoyang Jin

    (Department of Electrical Engineering, Shandong University, Jinan 250100, China)

  • Mohamed A. Mohamed

    (Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt)

Abstract

Robustness is an important performance index of power system state estimation, which is defined as the estimator’s capability to resist the interference. However, improving the robustness of state estimation often reduces the estimation accuracy. To solve this problem, this paper proposes a power system state estimation method for generalized M-estimation of optimized parameters based on sampling. Compared with the traditional robust state estimator, the generalized M-estimator based on projection statistics improves the robustness of state estimation, and the proposed optimized parameter determination method improves the overall accuracy of state estimation by appropriately adjusting its robustness. Considering different degrees of non-Gaussian distributed measurement noises and bad data, the estimation accuracy the proposed method is demonstrated to be up to 23% higher than the traditional generalized M-estimator through MATLAB simulations in IEEE 14, 118 bus test systems, and Polish 2736 bus system.

Suggested Citation

  • Yu Shi & Yueting Hou & Yue Yu & Zhaoyang Jin & Mohamed A. Mohamed, 2023. "Robust Power System State Estimation Method Based on Generalized M-Estimation of Optimized Parameters Based on Sampling," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2550-:d:1052683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye Guo & Wenchuan Wu & Boming Zhang & Hongbin Sun, 2014. "A Fast Solution for the Lagrange Multiplier-Based Electric Power Network Parameter Error Identification Model," Energies, MDPI, vol. 7(3), pages 1-12, March.
    2. Jian Chen & Tao Jin & Mohamed A. Mohamed & Andres Annuk & Udaya Dampage, 2022. "Investigating the Impact of Wind Power Integration on Damping Characteristics of Low Frequency Oscillations in Power Systems," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    3. Sepideh Radhoush & Maryam Bahramipanah & Hashem Nehrir & Zagros Shahooei, 2022. "A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Chen & Lei Gan & Sheeraz Iqbal & Marek Jasiński & Mohammed A. El-Meligy & Mohamed Sharaf & Samia G. Ali, 2023. "A Novel Evolving Framework for Energy Management in Combined Heat and Electricity Systems with Demand Response Programs," Sustainability, MDPI, vol. 15(13), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Jin & Fuliang Chu & Cong Ling & Daniel Legrand Mon Nzongo, 2015. "RETRACTED: A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 8(4), pages 1-19, April.
    2. Paolo Tenti & Tommaso Caldognetto, 2023. "Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids," Energies, MDPI, vol. 16(5), pages 1-23, February.
    3. Eva Buchta & Mathias Duckheim & Michael Metzger & Paul Stursberg & Stefan Niessen, 2023. "Leveraging Behavioral Correlation in Distribution System State Estimation for the Recognition of Critical System States," Energies, MDPI, vol. 16(20), pages 1-21, October.
    4. Wan Chen & Baolian Liu & Muhammad Shahzad Nazir & Ahmed N. Abdalla & Mohamed A. Mohamed & Zujun Ding & Muhammad Shoaib Bhutta & Mehr Gul, 2022. "An Energy Storage Assessment: Using Frequency Modulation Approach to Capture Optimal Coordination," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    5. Tao Jin & Xueyu Shen, 2018. "A Mixed WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 11(2), pages 1-22, February.
    6. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2016. "A Three-Stage Optimal Approach for Power System Economic Dispatch Considering Microgrids," Energies, MDPI, vol. 9(11), pages 1-18, November.
    7. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2550-:d:1052683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.