IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2317-d1048093.html
   My bibliography  Save this article

Composting of Municipal Solid Waste Using Earthworms and Ligno-Cellulolytic Microbial Consortia for Reclamation of the Degraded Sodic Soils and Harnessing Their Productivity Potential

Author

Listed:
  • Yash Pal Singh

    (Regional Research Station, ICAR-Central Soil Salinity Research Institute, Lucknow 226002, India)

  • Sanjay Arora

    (Regional Research Station, ICAR-Central Soil Salinity Research Institute, Lucknow 226002, India)

  • Vinay K. Mishra

    (Regional Research Station, ICAR-Central Soil Salinity Research Institute, Lucknow 226002, India)

  • Arjun Singh

    (Regional Research Station, ICAR-Central Soil Salinity Research Institute, Lucknow 226002, India)

Abstract

The management of municipal solid waste (MSW) and the reclamation of degraded sodic soils are two serious environmental and socio-economic problems experienced by the developing nations. To overcome these problems, a technology has been developed for the composting of MSW using earthworm and ligno-cellulolytic microbial consortia and its utilization for the sustainable reclamation of degraded sodic soils, as well as for harnessing their productivity potential. To standardize on-farm composting under aerobic conditions, the field experiment consisted of seven treatment combinations, replicated thrice with municipal solid waste (MSW) sole and in combination with agricultural wastes (AW) treated with earthworms ( Eisenia foetida ) and consortia of lingo-cellulolytic microbes such as Aspergillus spp., Trichoderma spp. and Bacillus spp. It was conducted at ICAR-CSSRI, Research farm, Shivri, Lucknow, India. The results revealed that the thermophilic phase was achieved at 60 days of composting and thereafter the temperature decreased. Marked changes in pH and EC were found and they changed from acidic to neutral. The reduction in total C, from initial to maturity, varied from 4.45 to 14.14% and the increase in total P and total K from 4.88 to 88.10% and 12.00 to 35.71%, respectively. The nutrient-rich quality compost based on the lowest C: N ratio, highest nutrient contents, microbial population (bacteria and fungi) and enzymatic activities was obtained from a mix of MSW and AW, enriched with earthworms and consortia of lingo-cellulolytic microbes. The efficacy of this enriched compost was evaluated for the reclamation of sodic soils and their potential for sustaining productivity of the rice-wheat cropping system was harnessed through combined application with a reduced dose of gypsum. The results indicated that the application of on-farm compost @10 t ha −1 in conjunction with a reduced quantity of gypsum (25% GR) significantly ( p < 0.05) improved the physico-chemical and microbial soil properties, and enhanced productivity of the rice-wheat cropping system over the use of only gypsum. This study proved that on-farm compost of MSW and its utilization for the reclamation of degraded sodic soils can be an alternate solution for useful disposal and management of MSW, thereby improving the health and productivity of sodic soils.

Suggested Citation

  • Yash Pal Singh & Sanjay Arora & Vinay K. Mishra & Arjun Singh, 2023. "Composting of Municipal Solid Waste Using Earthworms and Ligno-Cellulolytic Microbial Consortia for Reclamation of the Degraded Sodic Soils and Harnessing Their Productivity Potential," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2317-:d:1048093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Wu & Liheng Ren & Lin Luo & Jiachao Zhang & Lihua Zhang & Hongli Huang, 2020. "Bacterial and Fungal Community Dynamics and Shaping Factors During Agricultural Waste Composting with Zeolite and Biochar Addition," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    2. Mariangela Diacono & Francesco Montemurro, 2015. "Effectiveness of Organic Wastes as Fertilizers and Amendments in Salt-Affected Soils," Agriculture, MDPI, vol. 5(2), pages 1-10, April.
    3. Elango, D. & Thinakaran, N. & Panneerselvam, P. & Sivanesan, S., 2009. "Thermophilic composting of municipal solid waste," Applied Energy, Elsevier, vol. 86(5), pages 663-668, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Elisabeta Manea & Costel Bumbac & Laurentiu Razvan Dinu & Marius Bumbac & Cristina Mihaela Nicolescu, 2024. "Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements," Sustainability, MDPI, vol. 16(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    2. Muthu Manikandan & Sechul Chun & Zakayo Kazibwe & Judy Gopal & Udai Bhan Singh & Jae-Wook Oh, 2020. "Phenomenal Bombardment of Antibiotic in Poultry: Contemplating the Environmental Repercussions," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    3. Joko Priyono & Akhmad Zubaidi, 2023. "Foliar Application of Liquid-Silicate Rock Fertilizer Counteracts the Suppressing Effects of Saline Soils on Soybeans: A Glasshouse Assessment," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 9(2), pages 250-256, 04-2023.
    4. Zou, Shuzhen & Kang, Di, 2018. "Relationship between anaerobic digestion characteristics and biogas production under composting pretreatment," Renewable Energy, Elsevier, vol. 125(C), pages 485-494.
    5. Riya Sawarkar & Adnan Shakeel & Piyush A. Kokate & Lal Singh, 2022. "Organic Wastes Augment the Eco-Restoration Potential of Bamboo Species on Fly Ash-Degraded Land: A Field Study," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    6. Muhammad Naveed & Haroon Sajid & Adnan Mustafa & Bushra Niamat & Zulfiqar Ahmad & Muhammad Yaseen & Muhammad Kamran & Munazza Rafique & Sunny Ahmar & Jen-Tsung Chen, 2020. "Alleviation of Salinity-Induced Oxidative Stress, Improvement in Growth, Physiology and Mineral Nutrition of Canola ( Brassica napus L.) through Calcium-Fortified Composted Animal Manure," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    7. Kamalya Karamova & Natalia Danilova & Svetlana Selivanovskaya & Polina Galitskaya, 2022. "The Impact of Chicken Manure Biochar on Antibiotic Resistance Genes in Chicken Manure Composting," Agriculture, MDPI, vol. 12(8), pages 1-20, August.
    8. Piotr Sulewski & Karolina Kais & Marlena Gołaś & Grzegorz Rawa & Klaudia Urbańska & Adam Wąs, 2021. "Home Bio-Waste Composting for the Circular Economy," Energies, MDPI, vol. 14(19), pages 1-25, September.
    9. Demis Andrade Foronda & Gilles Colinet, 2022. "Combined Application of Organic Amendments and Gypsum to Reclaim Saline–Alkali Soil," Agriculture, MDPI, vol. 12(7), pages 1-10, July.
    10. Elena Elisabeta Manea & Costel Bumbac & Laurentiu Razvan Dinu & Marius Bumbac & Cristina Mihaela Nicolescu, 2024. "Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    11. Aadhityaa Mohanavelu & Sujay Raghavendra Naganna & Nadhir Al-Ansari, 2021. "Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    12. Manohara B & Belagali Sl, 2017. "Comparison of Backyard and Municipal Solid Waste Composting Phenomena by Physicochemical, FT-IR and X-Ray Diffraction Analysis," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 6(3), pages 38-44, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2317-:d:1048093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.