IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2238-d1046574.html
   My bibliography  Save this article

Evaluation Model Research of Coal Mine Intelligent Construction Based on FDEMATEL-ANP

Author

Listed:
  • Lin He

    (School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Dongliang Yuan

    (School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Lianwei Ren

    (School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China)

  • Ming Huang

    (China Construction Eighth Bureau Technology Construction Co., Ltd., Shanghai 200433, China)

  • Wenyu Zhang

    (The Third Construction Engineering Co., Ltd. of China Construction Second Engineering Bureau, Beijing 100070, China)

  • Jie Tan

    (China Construction Fifth Bureau South China Construction Co., Ltd., Shenzhen 518000, China)

Abstract

To improve intelligent construction standard systems in coal mines, we must promote the high-quality development of the coal mining industry. The current intelligent construction of coal mines is inefficient. Considering the complexity and diversity of coal mine intelligent construction index factors, this paper proposes an intelligent coal mine construction evaluation model that integrates the fuzzy decision-making trial and evaluation laboratory (FDEMATEL) and the analytical network process (ANP). Firstly, the evaluation index system is established based on the intelligent construction of coal mines. Secondly, the FDEMATEL is applied to deal with the fuzziness in the evaluation process and determine the influence relationship between the evaluation indexes of coal mine intelligent construction to draw the ANP network structure diagram. Finally, super decision software is used to calculate the weight of coal mine intelligent construction evaluation indexes, and then obtain the combination weight and correlation degree of each evaluation index. By applying the evaluation model to conduct a comprehensive evaluation of coal mine intelligent construction, the results show that there is a significant correlation between the indexes affecting the intelligent construction of coal mines. Basic platform intelligence and safety monitoring intelligence are the two most important aspects of intelligent coal mine construction. Database construction, mobile internet construction, big data support, and model algorithm support are the key indexes affecting the intelligent construction of coal mines.

Suggested Citation

  • Lin He & Dongliang Yuan & Lianwei Ren & Ming Huang & Wenyu Zhang & Jie Tan, 2023. "Evaluation Model Research of Coal Mine Intelligent Construction Based on FDEMATEL-ANP," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2238-:d:1046574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyan Jiang & Kun Lu & Bo Xia & Yong Liu & Caiyun Cui, 2019. "Identifying Significant Risks and Analyzing Risk Relationship for Construction PPP Projects in China Using Integrated FISM-MICMAC Approach," Sustainability, MDPI, vol. 11(19), pages 1-31, September.
    2. Kasım Şimşek & Selçuk Alp, 2022. "Evaluation of Landfill Site Selection by Combining Fuzzy Tools in GIS-Based Multi-Criteria Decision Analysis: A Case Study in Diyarbakır, Turkey," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    3. Xinping Wang & Cheng Zhang & Jun Deng & Chang Su & Zhenzhe Gao, 2022. "Analysis of Factors Influencing Miners’ Unsafe Behaviors in Intelligent Mines using a Novel Hybrid MCDM Model," IJERPH, MDPI, vol. 19(12), pages 1-30, June.
    4. Lei Chen & Hongxia Li & Shuicheng Tian, 2022. "Application of AHP and DEMATEL for Identifying Factors Influencing Coal Mine Practitioners’ Unsafe State," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    5. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2022. "Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    6. Kexue Zhang & Lei Kang & Xuexi Chen & Manchao He & Chun Zhu & Dong Li, 2022. "A Review of Intelligent Unmanned Mining Current Situation and Development Trend," Energies, MDPI, vol. 15(2), pages 1-19, January.
    7. Xiaofang Wo & Guichen Li & Yuantian Sun & Jinghua Li & Sen Yang & Haoran Hao, 2022. "The Changing Tendency and Association Analysis of Intelligent Coal Mines in China: A Policy Text Mining Study," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    8. Yang Li & Guoyan Zhao & Pan Wu & Ju Qiu, 2022. "An Integrated Gray DEMATEL and ANP Method for Evaluating the Green Mining Performance of Underground Gold Mines," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
    9. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
    2. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    3. Alexey Y. Bykovsky & Nikolay A. Vasiliev, 2023. "Parametrical T -Gate for Joint Processing of Quantum and Classic Optoelectronic Signals," J, MDPI, vol. 6(3), pages 1-27, July.
    4. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    6. Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    7. Kexue Zhang & Junao Zhu & Manchao He & Yaodong Jiang & Chun Zhu & Dong Li & Lei Kang & Jiandong Sun & Zhiheng Chen & Xiaoling Wang & Haijiang Yang & Yongwei Wu & Xingcheng Yan, 2022. "Research on Intelligent Comprehensive Evaluation of Coal Seam Impact Risk Based on BP Neural Network Model," Energies, MDPI, vol. 15(9), pages 1-14, April.
    8. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    9. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    10. Uztürk, Deniz & Büyüközkan, Gülçin, 2022. "Smart Agriculture Technology Evaluation: A Linguistic-based MCDM Methodology," Agri-Tech Economics Papers 337128, Harper Adams University, Land, Farm & Agribusiness Management Department.
    11. Uztürk, Deniz & Büyüközkan, Gülçin, 2022. "Smart Agriculture Technology Evaluation: A Linguistic-based MCDM Methodology," Land, Farm & Agribusiness Management Department 337128, Harper Adams University, Land, Farm & Agribusiness Management Department.
    12. Junlong Peng & Jing Zhou & Fanyi Meng & Yan Yu, 2021. "Analysis on the hidden cost of prefabricated buildings based on FISM-BN," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    13. Audrius Čereška & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ina Tetsman & Irina Grinbergienė, 2016. "Sustainable Assessment of Aerosol Pollution Decrease Applying Multiple Attribute Decision-Making Methods," Sustainability, MDPI, vol. 8(7), pages 1-12, June.
    14. Zhang, Yan & Wang, Yu-Hao & Zhao, Xu & Tong, Rui-Peng, 2023. "Dynamic probabilistic risk assessment of emergency response for intelligent coal mining face system, case study: Gas overrun scenario," Resources Policy, Elsevier, vol. 85(PB).
    15. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    16. Baležentis, Tomas & Streimikiene, Dalia, 2017. "Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation," Applied Energy, Elsevier, vol. 185(P1), pages 862-871.
    17. Tim H¨ofer & Rüdiger von Nitzsch & Reinhard Madlener, 2020. "Using Value-Focused Thinking and Multicriteria Decision Making to Evaluate Energy Transition Alternatives," Decision Analysis, INFORMS, vol. 17(4), pages 330-355, December.
    18. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    19. Elleuch, Mohamed Ali & Anane, Makram & Euchi, Jalel & Frikha, Ahmed, 2019. "Hybrid fuzzy multi-criteria decision making to solve the irrigation water allocation problem in the Tunisian case," Agricultural Systems, Elsevier, vol. 176(C).
    20. Höfer, Tim & Madlener, Reinhard, 2020. "A participatory stakeholder process for evaluating sustainable energy transition scenarios," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2238-:d:1046574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.