IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2175-d1045537.html
   My bibliography  Save this article

A Novel Multiport Hybrid Wave Energy System for Grid-Connected and Off-Grid Applications

Author

Listed:
  • Wei Yu

    (State Grid Digital Technology Holding Co., Ltd., Beijing 100053, China)

  • Ruiyang Ma

    (School of the Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Darui Xu

    (School of the Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Lei Huang

    (School of the Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Shixiang Wang

    (School of the Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Direct drive wave energy converters (DDWECs) have gradually become the mainstream of wave energy converters (WECs). In order to make better use of wave energy, energy storage devices and other renewable energy sources are often used to suppress power fluctuation in DDWECs. However, the addition of other energy sources will increase the complexity of the converter system and the number of power switches. Considering the flexibility of nine-switch converters (NSCs), this paper proposes a novel nine-switch grid-connected/off-grid multiport hybrid wave energy system (HWES). First, the system structure and modulation principle are described. Then, a model for a generator, a grid and energy storage are built, including a control strategy of each part. Finally, a simulation for the grid-connected/off-grid application and an experiment on the off-grid HWES are carried out. The results show that the multiport wave energy system can achieve the objective of stable and reliable power transmission by reducing power devices.

Suggested Citation

  • Wei Yu & Ruiyang Ma & Darui Xu & Lei Huang & Shixiang Wang, 2023. "A Novel Multiport Hybrid Wave Energy System for Grid-Connected and Off-Grid Applications," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2175-:d:1045537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    2. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    3. Sheng, Wanan, 2019. "Wave energy conversion and hydrodynamics modelling technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 482-498.
    4. Omar Farrok & Koushik Ahmed & Abdirazak Dahir Tahlil & Mohamud Mohamed Farah & Mahbubur Rahman Kiran & Md. Rabiul Islam, 2020. "Electrical Power Generation from the Oceanic Wave for Sustainable Advancement in Renewable Energy Technologies," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandev, Murat Barış & Altunkaynak, Abdüsselam & Çelik, Anıl, 2024. "Enhancing wave energy harvesting: Performance analysis of a dual chamber oscillating water column," Energy, Elsevier, vol. 290(C).
    2. Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
    3. Chen, Weixing & Lin, Xiongsen & Lu, Yunfei & Li, Shaoxun & Wang, Lucai & Zhang, Yongkuang & Gao, Feng, 2023. "Design and experiment of a double-wing wave energy converter," Renewable Energy, Elsevier, vol. 202(C), pages 1497-1506.
    4. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    5. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    7. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    8. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    9. Mandev, Murat Barıs & Altunkaynak, Abdüsselam, 2023. "Cylindrical frontwall entrance geometry optimization of an oscillating water column for utmost hydrodynamic performance," Energy, Elsevier, vol. 280(C).
    10. Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).
    11. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang & Wang, Chen, 2024. "Fully coupled simulation of dynamic characteristics of a backward bent duct buoy oscillating water column wave energy converter," Energy, Elsevier, vol. 294(C).
    12. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    13. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    15. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    16. Altunkaynak, Abdüsselam & Çelik, Anıl, 2022. "A novel Geno-Nonlinear formula for oscillating water column efficiency estimation," Energy, Elsevier, vol. 241(C).
    17. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    18. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    19. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    20. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2175-:d:1045537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.