IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010905.html
   My bibliography  Save this article

Fault diagnosis of a wave energy converter gearbox based on an Adam optimized CNN-LSTM algorithm

Author

Listed:
  • Kang, Jichuan
  • Zhu, Xu
  • Shen, Li
  • Li, Mingxin

Abstract

The complex structure and harsh operating environment of wave energy converters can result in various faults in transmission components. Environmental noise in practical operating situations may obscure the effective information in collected vibration signals, significantly increasing the difficulty of fault diagnosis. This paper presents a fault diagnosis model for the gearbox of the point absorber wave energy converter. The model integrates a convolutional neural network with long short-term memory to realize efficient extraction of local features from signals and enhance the performance in time-series analysis. Moreover, the model incorporates the Adaptive Moment Estimation algorithm to address the situations where gradients within tensors exhibit unstable changes in the model. A rigid-flexible coupled dynamics simulation model is developed to simulate vibration signals used to train and verify the fault diagnosis model. Experimental tests of the proposed model on a vibration dataset acquired from real vibration experiments demonstrate its efficacy in diagnosing various types of faults under interference of operating conditions. Comparative studies with other models demonstrate the superiority of the proposed model in terms of fault feature extraction, learning convergence efficiency, and diagnostic accuracy, indicating that the proposed model can achieve faster and more accurate fault diagnosis of wave energy converter gearboxes.

Suggested Citation

  • Kang, Jichuan & Zhu, Xu & Shen, Li & Li, Mingxin, 2024. "Fault diagnosis of a wave energy converter gearbox based on an Adam optimized CNN-LSTM algorithm," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010905
    DOI: 10.1016/j.renene.2024.121022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.