IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9447-d878035.html
   My bibliography  Save this article

Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity

Author

Listed:
  • Ben Allen

    (Department of Psychology, University of Kansas, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA)

  • Morgan Lane

    (Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TN 37996, USA)

  • Elizabeth Anderson Steeves

    (Department of Nutrition, University of Tennessee, 1215 W. Cumberland Ave., Knoxville, TN 37996, USA)

  • Hollie Raynor

    (Department of Nutrition, University of Tennessee, 1215 W. Cumberland Ave., Knoxville, TN 37996, USA)

Abstract

Ecological theories suggest that environmental, social, and individual factors interact to cause obesity. Yet, many analytic techniques, such as multilevel modeling, require manual specification of interacting factors, making them inept in their ability to search for interactions. This paper shows evidence that an explainable artificial intelligence approach, commonly employed in genomics research, can address this problem. The method entails using random intersection trees to decode interactions learned by random forest models. Here, this approach is used to extract interactions between features of a multi-level environment from random forest models of waist-to-height ratios using 11,112 participants from the Adolescent Brain Cognitive Development study. This study shows that methods used to discover interactions between genes can also discover interacting features of the environment that impact obesity. This new approach to modeling ecosystems may help shine a spotlight on combinations of environmental features that are important to obesity, as well as other health outcomes.

Suggested Citation

  • Ben Allen & Morgan Lane & Elizabeth Anderson Steeves & Hollie Raynor, 2022. "Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9447-:d:878035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Kristen Cooksey-Stowers & Marlene B. Schwartz & Kelly D. Brownell, 2017. "Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States," IJERPH, MDPI, vol. 14(11), pages 1-20, November.
    3. Fiese, Barbara H. & Hammons, Amber & Grigsby-Toussaint, Diana, 2012. "Family mealtimes: A contextual approach to understanding childhood obesity," Economics & Human Biology, Elsevier, vol. 10(4), pages 365-374.
    4. Ken Smith & Norman Waitzman, 1994. "Double jeopardy: Interaction effects of marital and poverty status on the risk of mortality," Demography, Springer;Population Association of America (PAA), vol. 31(3), pages 487-507, August.
    5. Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
    6. Glass, Thomas A. & McAtee, Matthew J., 2006. "Behavioral science at the crossroads in public health: Extending horizons, envisioning the future," Social Science & Medicine, Elsevier, vol. 62(7), pages 1650-1671, April.
    7. Kevin M. Fitzpatrick & Don Willis, 2020. "Chronic Disease, the Built Environment, and Unequal Health Risks in the 500 Largest U.S. Cities," IJERPH, MDPI, vol. 17(8), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
    3. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    4. Robertson, Jeandri & Ferreira, Caitlin & Botha, Elsamari & Oosthuizen, Kim, 2024. "Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction," Business Horizons, Elsevier, vol. 67(5), pages 499-510.
    5. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    6. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    7. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    8. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    9. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    10. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    11. Martin, Molly A. & Lippert, Adam M., 2012. "Feeding her children, but risking her health: The intersection of gender, household food insecurity and obesity," Social Science & Medicine, Elsevier, vol. 74(11), pages 1754-1764.
    12. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    13. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    14. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    15. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    16. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    17. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    18. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    19. Stefkovics, Ádám & Krekó, Péter & Koltai, Júlia, 2024. "When reality knocks on the door. The effect of conspiracy beliefs on COVID-19 vaccine acceptance and the moderating role of experience with the virus," Social Science & Medicine, Elsevier, vol. 356(C).
    20. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9447-:d:878035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.