IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p16045-d1282167.html
   My bibliography  Save this article

Path Planning of an Electric Vehicle for Logistics Distribution Considering Carbon Emissions and Green Power Trading

Author

Listed:
  • Hao Qiang

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
    Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment, Changzhou University, Changzhou 213164, China)

  • Rui Ou

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

  • Yanchun Hu

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

  • Zhenyu Wu

    (Changzhou Xingyu Automotive Lighting Systems Co., Ltd., Changzhou 213022, China)

  • Xiaohua Zhang

    (School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)

Abstract

As environmental awareness continues to grow and government policies provide incentives, electric vehicles (EVs) are becoming more widely used in logistics distribution. Considering green power trading and carbon emissions, this paper addresses the green vehicle routing problem (GVRP) and constructs an electric vehicle path model with time windows to minimize the total cost. To solve the model, a hybrid adaptive genetic algorithm (HAGA) is proposed. An improved nearest-neighbor algorithm is adopted to improve the quality of the initial population, and the adaptive crossover and mutation operators are introduced to achieve the better solution. In addition, based on the Schneider case, HAGA is used to solve the models with and without considering green power trading separately, and the results show that considering green power trading can reduce the total cost by 3.22% and carbon emissions by 23.38 kg. Finally, the experimental simulations further prove that with the increase in case size, HAGA can effectively reduce total cost. And it is beneficial for the popularization of electric vehicles in logistics distribution.

Suggested Citation

  • Hao Qiang & Rui Ou & Yanchun Hu & Zhenyu Wu & Xiaohua Zhang, 2023. "Path Planning of an Electric Vehicle for Logistics Distribution Considering Carbon Emissions and Green Power Trading," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16045-:d:1282167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/16045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/16045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nolz, Pamela C. & Absi, Nabil & Feillet, Dominique & Seragiotto, Clóvis, 2022. "The consistent electric-Vehicle routing problem with backhauls and charging management," European Journal of Operational Research, Elsevier, vol. 302(2), pages 700-716.
    2. Seyfi, Majid & Alinaghian, Mahdi & Ghorbani, Erfan & Çatay, Bülent & Saeid Sabbagh, Mohammad, 2022. "Multi-mode hybrid electric vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    4. Nan Ding & Jingshuai Yang & Zhibin Han & Jianming Hao, 2022. "Electric-Vehicle Routing Planning Based on the Law of Electric Energy Consumption," Mathematics, MDPI, vol. 10(17), pages 1-27, August.
    5. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    6. Wenzhu Liao & Lin Liu & Jiazhuo Fu, 2019. "A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    7. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Moon, Saedaseul & Lee, Deok-Joo, 2019. "An optimal electric vehicle investment model for consumers using total cost of ownership: A real option approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gitae Kim, 2024. "Electric Vehicle Routing Problem with States of Charging Stations," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    2. Nan Ding & Manman Li & Jianming Hao, 2023. "A Two-Phase Approach to Routing a Mixed Fleet with Intermediate Depots," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
    3. Yanfei Zhu & Chunhui Li & Kwang Y. Lee, 2022. "The NR-EGA for the EVRP Problem with the Electric Energy Consumption Model," Energies, MDPI, vol. 15(10), pages 1-12, May.
    4. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    5. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    6. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    7. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    8. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    9. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    10. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    11. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    12. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    13. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.
    14. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    15. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    16. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    17. Nan Ding & Jingshuai Yang & Zhibin Han & Jianming Hao, 2022. "Electric-Vehicle Routing Planning Based on the Law of Electric Energy Consumption," Mathematics, MDPI, vol. 10(17), pages 1-27, August.
    18. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    20. Cui, Shaohua & Yao, Baozhen & Chen, Gang & Zhu, Chao & Yu, Bin, 2020. "The multi-mode mobile charging service based on electric vehicle spatiotemporal distribution," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16045-:d:1282167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.