IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15555-d1272809.html
   My bibliography  Save this article

Flexible Operation to Reduce Greenhouse Gas Emissions along the Cold Chain for Chilling, Storage, and Transportation—A Case Study for Dairy Products

Author

Listed:
  • Martin Stöckl

    (Institute of New Energy Systems, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Johannes Idda

    (Institute of New Energy Systems, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany
    Faculty of Electrical Engineering and Information Technology, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Volker Selleneit

    (Institute of New Energy Systems, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

  • Uwe Holzhammer

    (Institute of New Energy Systems, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany
    Sustainability Research and Transfer Center Neuburg, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany)

Abstract

The further expansion of renewable energies in Germany requires flexible consumers to balance fluctuations in electricity production from variable renewable energies. Cold storage warehouses, due to their inherent storage capacity and widespread use, are well-suited for integrating more renewable energies. The potential of cold storage warehouses is often viewed in isolation and not in conjunction with the cold chain’s upstream and downstream processes. By adjusting the temperatures within the processes, the individual links in the cold chain can be made flexible. To assess the effects of flexibilization on emissions and electricity costs, thermodynamic models of the individual links in the cold chain and of a yogurt pallet are developed and linked together. Due to temperature fluctuations in the products resulting from the flexibilization, emission evaluations must be considered throughout the cold chain. Results of the simulation for the study period show that emissions reductions and electricity cost savings can be achieved in all three links when they are made flexible. However, the savings vary in magnitude. Only minor savings can be achieved in the cooling tunnel. The greatest potential for savings is in refrigerated transport, if deeper cooling occurs in the process before, i.e., in the cold storage warehouse.

Suggested Citation

  • Martin Stöckl & Johannes Idda & Volker Selleneit & Uwe Holzhammer, 2023. "Flexible Operation to Reduce Greenhouse Gas Emissions along the Cold Chain for Chilling, Storage, and Transportation—A Case Study for Dairy Products," Sustainability, MDPI, vol. 15(21), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15555-:d:1272809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    2. Farzad Dadras Javan & Italo Aldo Campodonico Avendano & Behzad Najafi & Amin Moazami & Fabio Rinaldi, 2023. "Machine-Learning-Based Prediction of HVAC-Driven Load Flexibility in Warehouses," Energies, MDPI, vol. 16(14), pages 1-15, July.
    3. Fadi Alsouda & Nick S. Bennett & Suvash C. Saha & Fatemeh Salehi & Mohammad S. Islam, 2023. "Vapor Compression Cycle: A State-of-the-Art Review on Cycle Improvements, Water and Other Natural Refrigerants," Clean Technol., MDPI, vol. 5(2), pages 1-25, May.
    4. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariia Kozlova & Alena Lohrmann, 2021. "Steering Renewable Energy Investments in Favor of Energy System Reliability: A Call for a Hybrid Model," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    2. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    3. Ali Kaboli & Farzad Dadras Javan & Italo Aldo Campodonico Avendano & Behzad Najafi & Luigi Pietro Maria Colombo & Sara Perotti & Fabio Rinaldi, 2024. "Just-in-Time Morning Ramp-Up Implementation in Warehouses Enabled by Machine Learning-Based Predictive Modelling: Estimation of Achievable Energy Saving through Simulation," Energies, MDPI, vol. 17(17), pages 1-18, September.
    4. Sorknæs, Peter & Thellufsen, Jakob Zinck & Knobloch, Kai & Engelbrecht, Kurt & Yuan, Meng, 2023. "Economic potentials of carnot batteries in 100% renewable energy systems," Energy, Elsevier, vol. 282(C).
    5. Joel Bertilsson & Lisa Göransson & Filip Johnsson, 2024. "Impact of Energy-Related Properties of Cities on Optimal Urban Energy System Design," Energies, MDPI, vol. 17(15), pages 1-24, August.
    6. Maiorino, Angelo & Petruzziello, Fabio & Grilletto, Arcangelo & Aprea, Ciro, 2024. "Kinetic energy harvesting for enhancing sustainability of refrigerated transportation," Applied Energy, Elsevier, vol. 364(C).
    7. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    8. Garcia-Novo, Patxi & Inubuse, Masako & Matsuno, Takeshi & Kyozuka, Yusaku & Archer, Philip & Matsuo, Hiroshi & Henzan, Katsuhiro & Sakaguchi, Daisaku, 2024. "Characterization of the wake generated downstream of a MW-scale tidal turbine in Naru Strait, Japan, based on vessel-mounted ADCP data," Energy, Elsevier, vol. 299(C).
    9. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org, revised Aug 2024.
    10. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    11. Piotr Jadwiszczak & Jakub Jurasz & Bartosz Kaźmierczak & Elżbieta Niemierka & Wandong Zheng, 2021. "Factors Shaping A/W Heat Pumps CO₂ Emissions—Evidence from Poland," Energies, MDPI, vol. 14(6), pages 1-13, March.
    12. Quirosa, Gonzalo & Torres, Miguel & Chacartegui, Ricardo, 2022. "Analysis of the integration of photovoltaic excess into a 5th generation district heating and cooling system for network energy storage," Energy, Elsevier, vol. 239(PC).
    13. Mustapha D. Ibrahim & Fatima A. S. Binofai & Maha O. A. Mohamad, 2022. "Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis," Energies, MDPI, vol. 15(18), pages 1-19, September.
    14. Langenmayr, Uwe & Ruppert, Manuel, 2023. "Renewable origin, additionality, temporal and geographical correlation – eFuels production in Germany under the RED II regime," Energy Policy, Elsevier, vol. 183(C).
    15. Valkering, Pieter & Moglianesi, Andrea & Godon, Louis & Duerinck, Jan & Huber, Dominik & Costa, Daniele, 2023. "Representing decentralized generation and local energy use flexibility in an energy system optimization model," Applied Energy, Elsevier, vol. 348(C).
    16. Mahmoud Badawy Elsheniti & Hany Al-Ansary & Jamel Orfi & Abdelrahman El-Leathy, 2024. "Performance Evaluation and Cycle Time Optimization of Vapor-Compression/Adsorption Cascade Refrigeration Systems," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    17. Jan-Philip Beck & Parantapa Sawant & Simon Ruben Drauz & Jan Sören Schwarz & Annika Heyer & Philipp Huismann, 2022. "Comparison of Component-Oriented and System-Oriented Modeling in the Context of Operational Energy System Analysis," Energies, MDPI, vol. 15(13), pages 1-22, June.
    18. Vering, Christian & Göbel, Stephan & Klebig, Tim & Will, Florian & Horst, Janik & Wüllhorst, Fabian & Nürenberg, Markus & Mehrfeld, Philipp & Müller, Dirk, 2024. "Towards a defossilized building sector with field tests in the lab: Review, development, and evaluation," Applied Energy, Elsevier, vol. 365(C).
    19. Yáñez, Édgar & Meerman, Hans & Ramírez, Andrea & Castillo, Édgar & Faaij, Andre, 2022. "Fully integrated CO2 mitigation strategy for an existing refinery: A case study in Colombia," Applied Energy, Elsevier, vol. 313(C).
    20. Aunedi, Marko & Yliruka, Maria & Dehghan, Shahab & Pantaleo, Antonio Marco & Shah, Nilay & Strbac, Goran, 2022. "Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen," Renewable Energy, Elsevier, vol. 194(C), pages 1261-1276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15555-:d:1272809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.