IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v5y2023i2p30-608d1140281.html
   My bibliography  Save this article

Vapor Compression Cycle: A State-of-the-Art Review on Cycle Improvements, Water and Other Natural Refrigerants

Author

Listed:
  • Fadi Alsouda

    (School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Nick S. Bennett

    (School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Suvash C. Saha

    (School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Fatemeh Salehi

    (School of Engineering, Macquarie University, Macquarie Park, NSW 2109, Australia)

  • Mohammad S. Islam

    (School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

Air conditioning and refrigeration have become necessary in modern life, accounting for more than 7.8% of greenhouse gases (GHG) emitted globally. Reducing the environmental impact of these systems is crucial for meeting the global GHG emission targets. Two principal directions must be considered to reduce the environmental impact of air conditioning systems. Firstly, reducing the direct effect by looking at less harmful refrigerants and secondly, reducing the indirect effect by searching for options to improve the system efficiency. This study presents the latest developments in the vapor compression cycle and natural refrigerants, focusing on water as a refrigerant. Natural refrigerants, and especially water, could be the ultimate solution for the environmental problems associated with the operation of vapor compression cycle (VCC) cooling systems, including ozone depletion (OD) and global warming (GW). Reducing the environmental impact of building cooling systems is essential, and the recent system improvements made to enhance the system coefficient of performance (COP) are thoroughly discussed in this paper. Though the cycle improvements discussed in this work are essential and could increase the system efficiency, they still need to solve the direct environmental impact of refrigerants. Accordingly, this paper suggests that natural refrigerants, including water, are the most suitable strategic choice to replace the current refrigerants in the refrigeration and air conditioning industry. Finally, this study reviews the latest VCC system improvements and natural refrigerants in order to guide interested researchers with solutions that may reduce the environmental impact of VCC systems and suggest future research areas.

Suggested Citation

  • Fadi Alsouda & Nick S. Bennett & Suvash C. Saha & Fatemeh Salehi & Mohammad S. Islam, 2023. "Vapor Compression Cycle: A State-of-the-Art Review on Cycle Improvements, Water and Other Natural Refrigerants," Clean Technol., MDPI, vol. 5(2), pages 1-25, May.
  • Handle: RePEc:gam:jcltec:v:5:y:2023:i:2:p:30-608:d:1140281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/5/2/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/5/2/30/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Stöckl & Johannes Idda & Volker Selleneit & Uwe Holzhammer, 2023. "Flexible Operation to Reduce Greenhouse Gas Emissions along the Cold Chain for Chilling, Storage, and Transportation—A Case Study for Dairy Products," Sustainability, MDPI, vol. 15(21), pages 1-27, November.
    2. Maiorino, Angelo & Petruzziello, Fabio & Grilletto, Arcangelo & Aprea, Ciro, 2024. "Kinetic energy harvesting for enhancing sustainability of refrigerated transportation," Applied Energy, Elsevier, vol. 364(C).
    3. Mahmoud Badawy Elsheniti & Hany Al-Ansary & Jamel Orfi & Abdelrahman El-Leathy, 2024. "Performance Evaluation and Cycle Time Optimization of Vapor-Compression/Adsorption Cascade Refrigeration Systems," Sustainability, MDPI, vol. 16(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:5:y:2023:i:2:p:30-608:d:1140281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.