IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v172y2023ics0301421522005572.html
   My bibliography  Save this article

Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model

Author

Listed:
  • Chen, Huanyu
  • Yi, Jizheng
  • Chen, Aibin
  • Peng, Duanxiang
  • Yang, Jieqiong

Abstract

Based on the panel data of 30 provinces in China from 2007 to 2019, this paper investigates the impact of green technology innovation on carbon intensity. Firstly, this paper studies the dynamic evolution and temporal and spatial pattern of China's provincial green technology innovation and carbon intensity. On this basis, the nonlinear spatial Durbin model (SDM) is used to explore the impact of green technology innovation on carbon intensity, and the relevant variables are controlled. The results show that there is a significant spatial agglomeration phenomenon in China's provincial green technology innovation level and carbon intensity. The direct impact of green technological innovation on carbon intensity in local region shows a significant "inverted-U" relationship, that is, when the level of green technological innovation is relatively low, green technological innovation will promote carbon emissions, while when the level of green technological innovation reaches a certain level, this promotion relationship will change into inhibition relationship. From the perspective of interregional spillover effect, green technological innovation also has an “inverted-U″ nonlinear impact on carbon emissions in adjacent regions, that is, the impact of green technological innovation on carbon emissions in adjacent regions is also promoted first and then restrained.

Suggested Citation

  • Chen, Huanyu & Yi, Jizheng & Chen, Aibin & Peng, Duanxiang & Yang, Jieqiong, 2023. "Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model," Energy Policy, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:enepol:v:172:y:2023:i:c:s0301421522005572
    DOI: 10.1016/j.enpol.2022.113338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522005572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Mingxuan & Lv, Lianhong & Wu, Jing & Wang, Shen & Zhang, Nan & Bai, Zihan & Luo, Hong, 2022. "Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model," Energy, Elsevier, vol. 251(C).
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Samargandi, Nahla, 2017. "Sector value addition, technology and CO2 emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 868-877.
    4. Paramati, Sudharshan Reddy & Mo, Di & Huang, Ruixian, 2021. "The role of financial deepening and green technology on carbon emissions: Evidence from major OECD economies," Finance Research Letters, Elsevier, vol. 41(C).
    5. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    6. Tyler A. Jacobson & Jasdeep S. Kler & Michael T. Hernke & Rudolf K. Braun & Keith C. Meyer & William E. Funk, 2019. "Direct human health risks of increased atmospheric carbon dioxide," Nature Sustainability, Nature, vol. 2(8), pages 691-701, August.
    7. Awaworyi Churchill, Sefa & Inekwe, John & Smyth, Russell & Zhang, Xibin, 2019. "R&D intensity and carbon emissions in the G7: 1870–2014," Energy Economics, Elsevier, vol. 80(C), pages 30-37.
    8. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    9. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    10. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    11. Li, Weiqing & Chien, Fengsheng & Hsu, Ching-Chi & Zhang, YunQian & Nawaz, Muhammad Atif & Iqbal, Sajid & Mohsin, Muhammad, 2021. "Nexus between energy poverty and energy efficiency: Estimating the long-run dynamics," Resources Policy, Elsevier, vol. 72(C).
    12. Suki, Norazah Mohd & Suki, Norbayah Mohd & Afshan, Sahar & Sharif, Arshian & Meo, Muhammad Saeed, 2022. "The paradigms of technological innovation and renewables as a panacea for sustainable development: A pathway of going green," Renewable Energy, Elsevier, vol. 181(C), pages 1431-1439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Ullah, Sami, 2023. "Towards the goal of going green: Do green growth and innovation matter for environmental sustainability in Pakistan," Energy, Elsevier, vol. 285(C).
    2. Su, Chi-Wei & Pang, Li-Dong & Tao, Ran & Shao, Xuefeng & Umar, Muhammad, 2022. "Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    4. Taner Akan & Halil İbrahim Gündüz & Tara Vanlı & Ahmet Baran Zeren & Ali Haydar Işık & Tamerlan Mashadihasanli, 2023. "Why are some countries cleaner than others? New evidence from macroeconomic governance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6167-6223, July.
    5. Bai, Jiancheng & Han, Zhiyong & Rizvi, Syed Kumail Abbas & Naqvi, Bushra, 2023. "Green trade or green technology? The way forward for G-7 economies to achieve COP 26 targets while making competing policy choices," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    7. Agboola, Mary Oluwatoyin & Bekun, Festus Victor & Joshua, Udi, 2021. "Pathway to environmental sustainability: Nexus between economic growth, energy consumption, CO2 emission, oil rent and total natural resources rent in Saudi Arabia," Resources Policy, Elsevier, vol. 74(C).
    8. Udemba, Edmund Ntom & Tosun, Merve, 2022. "Moderating effect of institutional policies on energy and technology towards a better environment quality: A two dimensional approach to China's sustainable development," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    9. Lu, Zhou & Mahalik, Mantu Kumar & Mahalik, Hrushikesh & Zhao, Rui, 2022. "The moderating effects of democracy and technology adoption on the relationship between trade liberalisation and carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    10. Matterne, Ilias & Roggeman, Annelies & Verleyen, Isabelle, 2024. "The impact of environmental taxation on innovation: Evidence from Canada," Energy Policy, Elsevier, vol. 187(C).
    11. Nchofoung, Tii N. & Asongu, Simplice A., 2022. "Effects of infrastructures on environmental quality contingent on trade openness and governance dynamics in Africa," Renewable Energy, Elsevier, vol. 189(C), pages 152-163.
    12. Pata, Ugur Korkut & Kartal, Mustafa Tevfik & Erdogan, Sinan & Sarkodie, Samuel Asumadu, 2023. "The role of renewable and nuclear energy R&D expenditures and income on environmental quality in Germany: Scrutinizing the EKC and LCC hypotheses with smooth structural changes," Applied Energy, Elsevier, vol. 342(C).
    13. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Razzaq, Asif & Ajaz, Tahseen & Li, Jing Claire & Irfan, Muhammad & Suksatan, Wanich, 2021. "Investigating the asymmetric linkages between infrastructure development, green innovation, and consumption-based material footprint: Novel empirical estimations from highly resource-consuming economi," Resources Policy, Elsevier, vol. 74(C).
    15. Usman Mehmood, 2024. "Analyzing the Role of Political Risk, GDP, and Eco-Innovations Towards CO2 Emissions in South Asian Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 2121-2135, March.
    16. Opoku, Eric Evans Osei & Dogah, Kingsley E. & Aluko, Olufemi Adewale, 2022. "The contribution of human development towards environmental sustainability," Energy Economics, Elsevier, vol. 106(C).
    17. Xu, Haitao & Yang, Chengying & Li, Xuetao & Liu, Ruiyu & Zhang, Yonghong, 2024. "How do fintech, digitalization, green technologies influence sustainable environment in CIVETS nations? An evidence from CUP FM and CUP BC approaches," Resources Policy, Elsevier, vol. 92(C).
    18. Obobisa, Emma Serwaa & Chen, Haibo & Mensah, Isaac Adjei, 2022. "The impact of green technological innovation and institutional quality on CO2 emissions in African countries," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    19. José Carlos Araújo Amarante & Cássio da Nóbrega Besarria & Helson Gomes de Souza & Otoniel Rodrigues dos Anjos Junior, 2021. "The relationship between economic growth, renewable and nonrenewable energy use and CO2 emissions: empirical evidences for Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 411-431, June.
    20. Mahamuda Firoj & Nair Sultana & Sharmina Khanom & Md Harun Ur Rashid & Abeda Sultana, 2023. "Pollution haven hypothesis and the environmental Kuznets curve of Bangladesh: an empirical investigation," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 197-227, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:172:y:2023:i:c:s0301421522005572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.