IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14417-d1252230.html
   My bibliography  Save this article

Biohythane Production from Domestic Wastewater Sludge and Cow Dung Mixture Using Two-Step Anaerobic Fermentation Process

Author

Listed:
  • Faraz Sufyan

    (Department of Environmental Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
    Department of Petroleum Technology, University of Karachi, Karachi 75270, Pakistan)

  • Mehmood Ali

    (Department of Environmental Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Sadia Khan

    (Department of Environmental Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Nazia Hossain

    (School of Engineering, RMIT University, Melbourne, VIC 3001, Australia)

Abstract

The current study explored bioenergy, particularly biohythane (a combination of biohydrogen (bioH 2 ) and biomethane (bioCH 4 )), production from cow dung and untreated domestic wastewater sludge to valorize the waste into a value-added product. The experimental study consisted of a two-step process: dark fermentation (DF) and anaerobic digestion (AD) with a range of processing conditions varying the temperature and pH (acidic, neutral, and basic). The study maintained thermophilic conditions (55 °C) for bioH 2 production and mesophilic conditions (35 °C) for bioCH 4 production. The highest yields of bioH 2 and bioCH 4 were obtained at a pH of 5.5 (108.04 mL H 2 /g VS) and a pH of 7.5 (768.54 mL CH 4 /g VS), respectively. Microorganisms, such as Lactobacillus brevis and Clostridium butyricum , in the wastewater sludge accelerated the conversion reaction resulting in the highest bioH 2 yield for an acidic environment, while Clostridium and Bacilli enhanced bioCH 4 yield in basic conditions. The maximum cumulative yield of biohythane was obtained under basic pH conditions (pH 7.5) through DF and AD, resulting in 811.12 mL/g VS and a higher volumetric energy density of 3.316 MJ/L as compared to other reaction conditions. The experimental data were modelled using a modified Gompertz’s model at a 95% confidence interval and showed the best-fitting data from experimental and simulation results for biohythane production. The regression coefficient R 2 value was highly significant at 0.995 and 0.992 for bioH 2 and bioCH 4 with the change in pH during biohythane production. Thus, this study presented an effective pathway to utilize untreated domestic wastewater sludge as an inoculum, showcasing the potential of biohythane production and the generation of valuable metabolic end-products across a broad range of pH conditions.

Suggested Citation

  • Faraz Sufyan & Mehmood Ali & Sadia Khan & Nazia Hossain, 2023. "Biohythane Production from Domestic Wastewater Sludge and Cow Dung Mixture Using Two-Step Anaerobic Fermentation Process," Sustainability, MDPI, vol. 15(19), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14417-:d:1252230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    2. Swati Hegde & Thomas A. Trabold, 2019. "Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    3. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Yousaf Raza, Muhammad & Lin, Boqiang, 2021. "Oil for Pakistan: What are the main factors affecting the oil import?," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Notodarmojo, Peni Astrini & Fujiwara, Takeshi & Habuer, & Pham Van, Dinh, 2022. "Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion: Carbon flow analysis," Energy, Elsevier, vol. 239(PC).
    3. Yang, Wei-Wei & Tang, Xin-Yuan & Ma, Xu & Li, Jia-Chen & Xu, Chao & He, Ya-Ling, 2023. "Rapid prediction, optimization and design of solar membrane reactor by data-driven surrogate model," Energy, Elsevier, vol. 285(C).
    4. Jenol, M.A. & Chu, P.H. & Ramle, I.K. & Joyce, L.J.W. & Lai-Yee, P. & Ibrahim, M.F. & Alitheen, N.B. & Osman, M.A. & Abd Gani, S. & Abd-Aziz, S., 2024. "Feasibility of agricultural biomass in Southeast Asia for enzymes production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    5. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    6. Oleg S. Sukharev, 2023. "Import substitution policy: Breaking the limits," Upravlenets, Ural State University of Economics, vol. 14(1), pages 33-46, March.
    7. Sim, Xue Yan & Tan, Jian Ping & He, Ning & Yeap, Swee Keong & Hui, Yew Woh & Luthfi, Abdullah Amru Indera & Manaf, Shareena Fairuz Abdul & Bukhari, Nurul Adela & Jamali, Nur Syakina, 2023. "Unraveling the effect of redox potential on dark fermentative hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Zohaib Ur Rehman Afridi & Wu Jing & Hassan Younas, 2019. "Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    9. Tang, Xin-Yuan & Yang, Wei-Wei & Ma, Xu & Cao, Xiangkun Elvis, 2023. "An integrated modeling method for membrane reactors and optimization study of operating conditions," Energy, Elsevier, vol. 268(C).
    10. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    11. Arvian Triantoro & Muhammad Zaheer Akhtar & Shiraz Khan & Khalid Zaman & Haroon ur Rashid Khan & Abdul Wahab Pathath & Muhamad Amar Mahmad & Kamil Sertoglu, 2023. "Riding the Waves of Fluctuating Oil Prices: Decoding the Impact on Economic Growth," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 34-50, March.
    12. Nunzia Esercizio & Mariamichela Lanzilli & Marco Vastano & Simone Landi & Zhaohui Xu & Carmela Gallo & Genoveffa Nuzzo & Emiliano Manzo & Angelo Fontana & Giuliana d’Ippolito, 2021. "Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae," Resources, MDPI, vol. 10(4), pages 1-26, April.
    13. Zheng, Xinzhu & Wang, Ranran & Liddle, Brantley & Wen, Yuli & Lin, Lu & Wang, Lining, 2022. "Crude oil footprint in the rapidly changing world and implications from their income and price elasticities," Energy Policy, Elsevier, vol. 169(C).
    14. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Kumar, Vineet & Malyan, Sandeep Kumar & Apollon, Wilgince & Verma, Pradeep, 2024. "Valorization of pulp and paper industry waste streams into bioenergy and value-added products: An integrated biorefinery approach," Renewable Energy, Elsevier, vol. 228(C).
    16. Karel Diéguez-Santana & Liliana B. Sarduy-Pereira & Neyfe Sablón-Cossío & Horacio Bautista-Santos & Fabiola Sánchez-Galván & Sebastiana del Monserrate Ruíz Cedeño, 2022. "Evaluation of the Circular Economy in a Pitahaya Agri-Food Chain," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    17. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    18. Abreham Tesfaye Besha & Misgina Tilahun Tsehaye & Girum Ayalneh Tiruye & Abaynesh Yihdego Gebreyohannes & Aymere Awoke & Ramato Ashu Tufa, 2020. "Deployable Membrane-Based Energy Technologies: the Ethiopian Prospect," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    19. Austine Ofondu Chinomso Iroegbu & Suprakas Sinha Ray, 2021. "Bamboos: From Bioresource to Sustainable Materials and Chemicals," Sustainability, MDPI, vol. 13(21), pages 1-25, November.
    20. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14417-:d:1252230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.