Prediction of the Water Inrush Risk from an Overlying Separation Layer in the Thick Overburden of a Thick Coal Seam
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Daolei Xie & Jing Han & Huide Zhang & Kai Wang & Zhongwen Du & Tianyu Miao, 2022. "Risk Assessment of Water Inrush from Coal Seam Roof Based on Combination Weighting-Set Pair Analysis," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xin Li & Bo Li & Ye Luo & Tao Li & Hang Han & Wenjie Zhang & Beibei Zhang, 2023. "Water-Richness Zoning Technology of Karst Aquifers at in the Roofs of Deep Phosphate Mines Based on Random Forest Model," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
- Tao Yan & Chuanqu Zhu & Qingfeng Li & Qian Xu, 2023. "Investigating Disaster Mechanisms Triggered by Abrupt Overburden Fracture Alterations in Close-Seam Mining Beneath an Exceptionally Thick Sandstone Aquifer," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
- Lele Xiao & Fan Li & Chao Niu & Gelian Dai & Qian Qiao & Chengsen Lin, 2022. "Evaluation of Water Inrush Hazard in Coal Seam Roof Based on the AHP-CRITIC Composite Weighted Method," Energies, MDPI, vol. 16(1), pages 1-20, December.
- Baoxin Zhao & Qimeng Liu & Jingzhong Zhu, 2023. "Risk Assessment and Zonation of Roof Water Inrush Based on the Analytic Hierarchy Process, Principle Component Analysis, and Improved Game Theory (AHP–PCA–IGT) Method," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
- Aorui Bi & Shuya Huang & Xinguo Sun, 2023. "Risk Assessment of Oil and Gas Pipeline Based on Vague Set-Weighted Set Pair Analysis Method," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
- Jie Liu & Qian Ma & Wanqing Wang & Guanding Yang & Haowen Zhou & Xinyue Hu & Liangyun Teng & Xuehua Luo, 2022. "Risk Level Assessment and CO Prediction of Underground Mines for Poisoning and Asphyxiation Accidents," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
More about this item
Keywords
attribute hierarchical model; coefficient of variation method; improved catastrophe progression method; risk of water inrush;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13988-:d:1244209. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.