IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13629-d1238226.html
   My bibliography  Save this article

Physicochemical and Microbial Properties of Dairy Barn Soils: A Case Study in Costa Rican Farm-Associated Soils Harboring the Foodborne Pathogen Listeria monocytogenes

Author

Listed:
  • Rossy Guillén-Watson

    (Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica)

  • Luis Barboza-Fallas

    (Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica)

  • Federico Masís-Meléndez

    (Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica)

  • Olga Rivas-Solano

    (Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica)

  • Rodrigo Aguilar-Rodríguez

    (Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica)

  • Alejandro Medaglia-Mata

    (Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
    Laboratorio Institucional de Microscopía, Instituto Tecnológico de Costa Rica, Cartago 30109, Costa Rica)

  • Michel Abanto

    (Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile)

  • Kattia Núñez-Montero

    (Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile)

Abstract

Animal farming activities can influence soil properties that contribute to the survival of foodborne pathogens like the ubiquitous Listeria monocytogenes . However, the presence of this pathogen in farm-associated soils in Costa Rica has not been studied, which might provide new insights regarding the environmental conditions associated with the establishment of this pathogen. In this work, we correlated the presence of L. monocytogenes with the soil physicochemical properties and bacterial community structure of soils associated with livestock activities, including a dairy barn floor (DB) and a slaughterhouse holding pen (SH). A cropland (CL) was included as an example of soil not associated with animal farming practices. We characterized the presence pattern of L. monocytogenes via culture-dependent and culture-independent techniques (i.e., metabarcoding based on 16S rRNA gene sequencing) and conducted a determination of physical, elemental and chemical parameters with Fourier-transform infrared spectroscopy (FT-IR) to statistically determine the soil properties that correlate with L. monocytogenes ’ presence in the soil. L. monocytogenes was isolated from DB samples and SH but not from CL. Subsequently, 16S rRNA gene-based metabarcoding showed that the presence of L. monocytogenes was positively correlated with higher bacterial diversity, while physicochemical analyses revealed that the total hydrogen and nitrogen contents of soil organic matter, pH, and electrical conductivity were the main drivers of L. monocytogenes ’ presence. Moreover, a CL sample fertilized with animal-derived products showed DB-like physicochemical properties matching conditions in favor of L. monocytogenes ’ presence. Hence, our work emphasizes the significance of soil as a primary source for the widespread dissemination of pathogens, particularly underscoring the necessity for improved agricultural practices to prevent cross-contamination with L. monocytogenes . Additionally, we highlight the importance of further understanding the biotic and abiotic factors in facilitating the establishment of L. monocytogenes.

Suggested Citation

  • Rossy Guillén-Watson & Luis Barboza-Fallas & Federico Masís-Meléndez & Olga Rivas-Solano & Rodrigo Aguilar-Rodríguez & Alejandro Medaglia-Mata & Michel Abanto & Kattia Núñez-Montero, 2023. "Physicochemical and Microbial Properties of Dairy Barn Soils: A Case Study in Costa Rican Farm-Associated Soils Harboring the Foodborne Pathogen Listeria monocytogenes," Sustainability, MDPI, vol. 15(18), pages 1-12, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13629-:d:1238226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Modupe Stella Ayilara & Oluwaseyi Samuel Olanrewaju & Olubukola Oluranti Babalola & Olu Odeyemi, 2020. "Waste Management through Composting: Challenges and Potentials," Sustainability, MDPI, vol. 12(11), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    3. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Sana Shahab & Mohd Anjum, 2022. "Solid Waste Management Scenario in India and Illegal Dump Detection Using Deep Learning: An AI Approach towards the Sustainable Waste Management," Sustainability, MDPI, vol. 14(23), pages 1-28, November.
    5. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    6. Muhammad Rifqi Ismiraj & Asri Wulansari & Yadi Setiadi & Aditia Pratama & Novi Mayasari, 2023. "Perceptions of Community-Based Waste Bank Operators and Customers on Its Establishment and Operationalization: Cases in Pangandaran, Indonesia," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    7. Maria Triassi & Bruna De Simone & Paolo Montuori & Immacolata Russo & Elvira De Rosa & Fabiana Di Duca & Claudio Crivaro & Vittorio Cerullo & Patrizia Pontillo & Sergi Díez, 2023. "Determination of Residual Municipal Solid Waste Composition from Rural and Urban Areas: A Step toward the Optimization of a Waste Management System for Efficient Material Recovery," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    8. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    9. Safar, Korai Muhammad & Bux, Mahar Rasool & Faria, Uqaili & Pervez, Shaikh, 2021. "Integrated model of municipal solid waste management for energy recovery in Pakistan," Energy, Elsevier, vol. 219(C).
    10. Fuad Ameen & Ali A. Al-Homaidan, 2020. "Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    11. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    12. Yuan Liu & Jiahui Liu & Hongyan Cheng & Yuan Luo & Kokyo Oh & Xiangzhuo Meng & Haibo Zhang & Na Liu & Mingchang Chang, 2022. "Seedling Establishment Test for the Comprehensive Evaluation of Compost Phytotoxicity," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    13. Hülya Sayğı, 2023. "Effect of Municipal Solid Waste Compost on Yield, Plant Growth and Nutrient Elements in Strawberry Cultivation," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    14. Vincenzo Torretta & Athanasia K. Tolkou & Ioannis A. Katsoyiannis & Francesca Maria Caccamo & Marco Carnevale Miino & Marco Baldi & Maria Cristina Collivignarelli, 2021. "Enhancement of Methanogenic Activity in Volumetrically Undersized Reactor by Mesophilic Co-Digestion of Sewage Sludge and Aqueous Residue," Sustainability, MDPI, vol. 13(14), pages 1-11, July.
    15. Shaik Vaseem Akram & Rajesh Singh & Anita Gehlot & Mamoon Rashid & Ahmed Saeed AlGhamdi & Sultan S. Alshamrani & Deepak Prashar, 2021. "Role of Wireless Aided Technologies in the Solid Waste Management: A Comprehensive Review," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    16. Cenwei Liu & Yi Lin & Jing Ye & Gordon W. Price & Yixiang Wang, 2023. "Effect of Bamboo Vinegar on Control of Nitrogen Loss in Vegetable Waste and Manure Composting," Agriculture, MDPI, vol. 13(7), pages 1-17, June.
    17. Grazia Policastro & Alessandra Cesaro, 2022. "Composting of Organic Solid Waste of Municipal Origin: The Role of Research in Enhancing Its Sustainability," IJERPH, MDPI, vol. 20(1), pages 1-14, December.
    18. Akhmad Mustafa & Mudian Paena & Admi Athirah & Erna Ratnawati & Ruzkiah Asaf & Hidayat Suryanto Suwoyo & Sahabuddin Sahabuddin & Erfan Andi Hendrajat & Kamaruddin Kamaruddin & Early Septiningsih & And, 2022. "Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    19. Jain, Harshita, 2024. "From pollution to progress: Groundbreaking advances in clean technology unveiled," Innovation and Green Development, Elsevier, vol. 3(2).
    20. D. M. N. S. Dissanayaka & S. S. Udumann & D. K. R. P. L. Dissanayake & T. D. Nuwarapaksha & Anjana J. Atapattu, 2023. "Review on Aquatic Weeds as Potential Source for Compost Production to Meet Sustainable Plant Nutrient Management Needs," Waste, MDPI, vol. 1(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13629-:d:1238226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.