IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p13006-d1227944.html
   My bibliography  Save this article

Sustainable Cropping System Intensification in Arid Region of India: Fallow Replacement with Limited Duration Sorghum–Legume Intercropping Followed by Eruca sativa Mill. Grown on Conserved Soil Moisture

Author

Listed:
  • Suresh Pal Singh Tanwar

    (Regional Research Station, Central Arid Zone Research Institute, Pali-Marwar 306 401, Rajasthan, India)

  • Panna Lal Regar

    (Regional Research Station, Central Arid Zone Research Institute, Pali-Marwar 306 401, Rajasthan, India)

  • Shiv Datt

    (Regional Research Station, Central Arid Zone Research Institute, Pali-Marwar 306 401, Rajasthan, India)

  • Sanjay S. Rathore

    (Division of Agronomy, Indian Agricultural Research Institute, New Delhi 110 012, India)

Abstract

A field experiment was conducted to explore the possibilities of sustainable crop intensification in the fallow– Eruca sativa Mill. system in arid ecology by replacing fallow with short-duration sorghum–legume intercropping. The experiment was laid out in a split-plot design with two planting systems (bed and conventional) in main plots and a factorial combination of crop duration (50 and 60 days) and cropping systems (sole sorghum, sorghum + cowpea, sorghum + Sesbania in 2:2 ratio) in sub-plots. In the succeeding Eruca sativa crop, residuals and two gypsum levels (0 and 250 kg ha −1 ) were tested. Bed planting practiced during both seasons did not improve the system productivity to significant levels. Extending the duration of fallow replacement crops from 50 to 60 days significantly increased their forage yield, overall system productivity by 25–34%, and system net returns by 15.9–21.5%. Amongst the intercropping systems, the sorghum + Sesbania system added 10–13 tonnes ha −1 Sesbania biomass to the soil, resulting in higher soil organic carbon, available nitrogen, dehydrogenase activity, and residual soil moisture, which increased the yield of the succeeding Eruca sativa crop by 8.8–15% compared to the residual of sole sorghum. However, it could not compensate for the yield loss due to the utilization of 50% of the area for growing the green manure crop. The sorghum + cowpea intercropping– Eruca sativa system was found to be the optimum combination with a system productivity of 1.27–1.87 Mg ha −1 Eruca sativa seed equivalent. The productivity of Eruca sativa further improved by 9.5–23.7% due to the soil application of gypsum @ 250 kg ha −1 . When averaged over treatments, fallow replacement during the rainy season reduced the available soil moisture at the sowing of Eruca sativa by 8.3–22.8% and subsequently its yield by 16.5–30.4% compared to the fallow– Eruca sativa system. However, with this production penalty, an additional rainy-season fodder crop was successfully grown, which improved the system productivity by 57.7–82.8%, net returns by 31.2–57.3%, and rainfall use efficiency from 0.21 to 36 USD/mm −1 ha −1 . Hence, it may be concluded that short-duration fodder crops may be taken as fallow replacement crops for higher system productivity and rainfall use efficiency.

Suggested Citation

  • Suresh Pal Singh Tanwar & Panna Lal Regar & Shiv Datt & Sanjay S. Rathore, 2023. "Sustainable Cropping System Intensification in Arid Region of India: Fallow Replacement with Limited Duration Sorghum–Legume Intercropping Followed by Eruca sativa Mill. Grown on Conserved Soil Moistu," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13006-:d:1227944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/13006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/13006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Shiwu & Wang, Yunpeng & Dong, Shengwu & Chen, Yang & Cao, Fenghua & Chai, Fang & Wang, Xiaohong, 2009. "Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties," Renewable Energy, Elsevier, vol. 34(7), pages 1871-1876.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Anilkumar R. & Rathod, Virendra K., 2018. "Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave: Optimization and kinetic studies," Renewable Energy, Elsevier, vol. 121(C), pages 757-767.
    2. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    3. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    4. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    5. Hermida, Lilis & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2015. "Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1223-1233.
    6. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    7. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    8. Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
    9. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    10. Li, Ji & Peng, Xiao & Luo, Meng & Zhao, Chun-Jian & Gu, Cheng-Bo & Zu, Yuan-Gang & Fu, Yu-Jie, 2014. "Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid," Applied Energy, Elsevier, vol. 115(C), pages 438-444.
    11. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    12. Chakrabarti, Mohammed Harun & Ali, Mehmood & Usmani, Jafar Nazir & Khan, Nasim Ahmed & Hasan, Diya'uddeen Basheer & Islam, Md. Sakinul & Abdul Raman, Abdul Aziz & Yusoff, Rozita & Irfan, Muhammad Fais, 2012. "Status of biodiesel research and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4396-4405.
    13. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    14. Pattanaik, Bhabani Prasanna & Misra, Rahul Dev, 2017. "Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 545-557.
    15. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    16. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    17. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    18. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    19. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    20. Aghababaie, Marzieh & Beheshti, Masoud & Razmjou, Amir & Bordbar, Abdol-Khalegh, 2019. "Two phase enzymatic membrane reactor for the production of biodiesel from crude Eruca sativa oil," Renewable Energy, Elsevier, vol. 140(C), pages 104-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13006-:d:1227944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.