IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12895-d1225529.html
   My bibliography  Save this article

Optimal Configuration of Wind-PV and Energy Storage in Large Clean Energy Bases

Author

Listed:
  • Mingyi Liu

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Bin Zhang

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Jiaqi Wang

    (Management Committee of Beijing Future Science City, Beijing 102209, China)

  • Han Liu

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Jianxing Wang

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Chenghao Liu

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Jiahui Zhao

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Yue Sun

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Rongrong Zhai

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Yong Zhu

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

Abstract

The installed capacity of energy storage in China has increased dramatically due to the national power system reform and the integration of large scale renewable energy with other sources. To support the construction of large-scale energy bases and optimizes the performance of thermal power plants, the research on the corporation mode between energy storage and thermal energy, including the optimization of energy-storage capacity and its operation in large-scale clean energy bases. In this paper, a large-scale clean energy base system is modeled with EBSILON and a capacity calculation method is established by minimizing the investment cost and energy storage capacity of the power system and constraints such as power balance, SOC, and power fluctuations. The research proposed a method of using coupled system of thermal energy storage systems primarily based on molten salt thermal storage and thermal power generation for rough modulation and using battery energy storage system for fine modulation tasks. Example of fine modulation includes frequency modulation and heating demand of the district, which significantly reduces the energy storage investment by more than 95%. A case study of a 10 MW clean energy base is conducted. The result shows that the overall pre-tax internal rate of return of the base project is 8%, which has good economic benefits.

Suggested Citation

  • Mingyi Liu & Bin Zhang & Jiaqi Wang & Han Liu & Jianxing Wang & Chenghao Liu & Jiahui Zhao & Yue Sun & Rongrong Zhai & Yong Zhu, 2023. "Optimal Configuration of Wind-PV and Energy Storage in Large Clean Energy Bases," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12895-:d:1225529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    2. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    3. Li, Gaopeng & Zhang, Jieli & He, Hongwen, 2017. "Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 194(C), pages 578-587.
    4. Chennaif, Mohammed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2021. "Electric System Cascade Extended Analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with Battery Energy Storage System and thermal energy storage," Energy, Elsevier, vol. 227(C).
    5. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    6. Guo, Hongqiang & Lu, Silong & Hui, Hongzhong & Bao, Chunjiang & Shangguan, Jinyong, 2019. "Receding horizon control-based energy management for plug-in hybrid electric buses using a predictive model of terminal SOC constraint in consideration of stochastic vehicle mass," Energy, Elsevier, vol. 176(C), pages 292-308.
    7. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    8. Wang, Xianxun & Virguez, Edgar & Xiao, Weihua & Mei, Yadong & Patiño-Echeverri, Dalia & Wang, Hao, 2019. "Clustering and dispatching hydro, wind, and photovoltaic power resources with multiobjective optimization of power generation fluctuations: A case study in southwestern China," Energy, Elsevier, vol. 189(C).
    9. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    10. Wu, Ji & Su, Hao & Meng, Jinhao & Lin, Mingqiang, 2023. "Electric vehicle charging scheduling considering infrastructure constraints," Energy, Elsevier, vol. 278(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi’an Wang & Zhe Wu & Dong Ni, 2024. "Large-Scale Optimization among Photovoltaic and Concentrated Solar Power Systems: A State-of-the-Art Review and Algorithm Analysis," Energies, MDPI, vol. 17(17), pages 1-38, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    2. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    4. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    5. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    6. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    7. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    8. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    9. Guo, Hongqiang & Hou, Daizheng & Du, Shangye & Zhao, Ling & Wu, Jian & Yan, Ning, 2020. "A driving pattern recognition-based energy management for plug-in hybrid electric bus to counter the noise of stochastic vehicle mass," Energy, Elsevier, vol. 198(C).
    10. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    11. Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
    12. Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
    13. Hilario J. Torres-Herrera & Alexis Lozano-Medina, 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island," Energies, MDPI, vol. 14(12), pages 1-27, June.
    14. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    15. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    16. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    17. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    18. Zhang, Aibo & Yin, Zhaoyuan & Wu, Zhiying & Xie, Min & Liu, Yiliu & Yu, Haoshui, 2023. "Investigation of the compressed air energy storage (CAES) system utilizing systems-theoretic process analysis (STPA) towards safe and sustainable energy supply," Renewable Energy, Elsevier, vol. 206(C), pages 1075-1085.
    19. Zhu, Lingfeng & Wang, Yinshun & Guo, Yuetong & Liu, Wei & Hu, Chengyang, 2023. "Current decay and compensation of a closed-loop HTS magnet in non-uniform magnetic fields based on electro-magneto-thermal semi-analytical analysis," Energy, Elsevier, vol. 277(C).
    20. Lin Hu & Xianzhi Xu, 2023. "Current Pulse-Based Measurement Technique for Zinc–Air Battery Parameters," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12895-:d:1225529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.