IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12439-d1218258.html
   My bibliography  Save this article

Processing-in-Memory Development Strategy for AI Computing Using Main-Path and Doc2Vec Analyses

Author

Listed:
  • Euiyoung Chung

    (Memory System R&D, SK Hynix America, 3101 N 1st, San Jose, CA 95134, USA)

  • So Young Sohn

    (Department of Industrial Engineering, Yonsei University, Shinchon-Dong 134, Seoul 03722, Republic of Korea)

Abstract

Processing-in-Memory (PiM), which combines a memory device with a Processing Unit (PU) into an integrated chip, has drawn special attention in the field of Artificial Intelligence semiconductors. Currently, in the development and commercialization of PiM’s technology, there are challenges in the hegemony competition between the PU and memory device industries. In addition, there are challenges in finding strategic partnerships rather than independent development due to the complexity of technological development caused by heterogeneous chips. In this study, patent Main Path Analysis (MPA) is used to identify the majority and complementary groups between PU and memory devices for PiM. Subsequently, Document-to-Vector (Doc2Vec) and similarity-scoring analyses are used to determine the potential partners for technical cooperation required for PiM technology development for the majority group identified. According to the empirical results, PiM core technology is evolving from PU to memory device with an ‘architecture-operation-architecture’ design pattern. The ten ASIC candidates are identified for strategic partnerships with memory device suppliers. Those partnership candidates include several mobile AP firms, implying PiM’s opportunities in the field of mobile applications. It suggests that memory device suppliers should prepare for different technology strategies for PiM technology development. This study contributes to the literature and high-tech industry via the proposed quantitative technology partnership model.

Suggested Citation

  • Euiyoung Chung & So Young Sohn, 2023. "Processing-in-Memory Development Strategy for AI Computing Using Main-Path and Doc2Vec Analyses," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12439-:d:1218258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    2. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    3. Junmo Kim & Juneseuk Shin, 2018. "Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1439-1459, September.
    4. Xiao, Yu & Lu, Louis Y.Y. & Liu, John S. & Zhou, Zhili, 2014. "Knowledge diffusion path analysis of data quality literature: A main path analysis," Journal of Informetrics, Elsevier, vol. 8(3), pages 594-605.
    5. Samuli Laato & Matti Mäntymäki & A. K.M. Najmul Islam & Sami Hyrynsalmi & Teemu Birkstedt, 2023. "Trends and Trajectories in the Software Industry: implications for the future of work," Information Systems Frontiers, Springer, vol. 25(2), pages 929-944, April.
    6. J Michael Geringer, 1991. "Strategic Determinants of Partner Selection Criteria in International Joint Ventures," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 22(1), pages 41-62, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yong & Yang, Qijin & Lu, Shuo, 2023. "Research on the identification and formation mechanism of the main path of digital technology diffusion: Empirical evidence from China," Technology in Society, Elsevier, vol. 75(C).
    2. Flavia Filippin, 2021. "Do main paths reflect technological trajectories? Applying main path analysis to the semiconductor manufacturing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6443-6477, August.
    3. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Xu, Haiyun & Yang, Guancan, 2022. "A semantic main path analysis method to identify multiple developmental trajectories," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    5. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    6. Alessandri, Enrico, 2023. "Identifying technological trajectories in the mining sector using patent citation networks," Resources Policy, Elsevier, vol. 80(C).
    7. Ichiro Watanabe & Soichiro Takagi, 2021. "Technological Trajectory Analysis of Patent Citation Networks: Examining the Technological Evolution of Computer Graphic Processing Systems," The Review of Socionetwork Strategies, Springer, vol. 15(1), pages 1-25, June.
    8. Hwang, Seonho & Shin, Juneseuk, 2019. "Extending technological trajectories to latest technological changes by overcoming time lags," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 142-153.
    9. Ichiro Watanabe & Soichiro Takagi, 2022. "NK model-based analysis of technological trajectories: a study on the technological field of computer graphic processing systems," Evolutionary and Institutional Economics Review, Springer, vol. 19(1), pages 119-140, April.
    10. Francesco Pasimeni, 2020. "The Origin of the Sharing Economy Meets the Legacy of Fractional Ownership," SPRU Working Paper Series 2020-19, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    12. Huang, Chen-Hao & Liu, John S. & Ho, Mei Hsiu-Ching & Chou, Tzu-Chuan, 2022. "Towards more convergent main paths: A relevance-based approach," Journal of Informetrics, Elsevier, vol. 16(3).
    13. Yu, Dejian & Yan, Zhaoping, 2023. "Main path analysis considering citation structure and content: Case studies in different domains," Journal of Informetrics, Elsevier, vol. 17(1).
    14. Fang Han & Sejun Yoon & Nagarajan Raghavan & Hyunseok Park, 2022. "Investigating Company’s Technical Development Directions Based on Internal Knowledge Inheritance and Inventor Capabilities: The Case of Samsung Electronics," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    15. Bhatt, Priyanka C. & Lai, Kuei-Kuei & Drave, Vinayak A. & Lu, Tzu-Chuen & Kumar, Vimal, 2023. "Patent analysis based technology innovation assessment with the lens of disruptive innovation theory: A case of blockchain technological trajectories," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    16. Huailan Liu & Zhiwang Chen & Jie Tang & Yuan Zhou & Sheng Liu, 2020. "Mapping the technology evolution path: a novel model for dynamic topic detection and tracking," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2043-2090, December.
    17. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    18. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).
    19. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).
    20. Dehdarian, Amin & Tucci, Christopher L, 2021. "A complex network approach for analyzing early evolution of smart grid innovations in Europe," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12439-:d:1218258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.