IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12173-d1213595.html
   My bibliography  Save this article

Performance Improvement Plan towards Energy-Efficient Naturally Ventilated Houses in Tropical Climate Regions

Author

Listed:
  • Muhammad Iqbal

    (Graduate School of Human-Environment Studies, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan)

  • Akihito Ozaki

    (Faculty of Human-Environment Studies, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan)

  • Younhee Choi

    (Faculty of Human-Environment Studies, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan)

  • Yusuke Arima

    (Faculty of Human-Environment Studies, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan)

Abstract

The majority of the population in Indonesia lives in naturally ventilated and unconditioned residential buildings because they cannot afford energy services. This situation is common in many countries in tropical regions, negatively affecting the occupants’ health due to overheating. Therefore, housing types that can cool down indoor temperatures to the extent possible using a passive approach, rather than an active approach, should be developed. This study aims to improve naturally ventilated houses by considering the louver area and insulation of houses. First, we employ an on-site measurement for collecting data such as the indoor/outdoor temperature and relative humidity in an Indonesian city, Lhokseumawe. In addition, the experimental data are used to validate a numerical simulation model. Second, the numerical simulation is utilized to establish energy-efficient design solutions for houses in 14 Indonesian locations. The results show that, compared with the insulation cases, different louver areas insignificantly change indoor air conditions by approximately 0.3 to 1 °C. Additionally, the application of a combined performance improvement for both louver areas and building envelope insulation levels can reduce the indoor air temperature and relative humidity by 2.2 °C and 8%, respectively. Moreover, the daily cooling demand for the proposed improvement plan is reduced by 18.90% compared with that for the existing case. Furthermore, the annual cooling loads for the entire simulated regions are reduced by 46.63 GJ/year (23.09%). This study is a potential starting point for achieving zero-energy housing and occupants’ sufficient thermal comfort in unconditioned and naturally ventilated houses in Indonesia.

Suggested Citation

  • Muhammad Iqbal & Akihito Ozaki & Younhee Choi & Yusuke Arima, 2023. "Performance Improvement Plan towards Energy-Efficient Naturally Ventilated Houses in Tropical Climate Regions," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12173-:d:1213595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    2. Sambodo, Maxensius Tri & Novandra, Rio, 2019. "The state of energy poverty in Indonesia and its impact on welfare," Energy Policy, Elsevier, vol. 132(C), pages 113-121.
    3. Liddell, Christine & Morris, Chris, 2010. "Fuel poverty and human health: A review of recent evidence," Energy Policy, Elsevier, vol. 38(6), pages 2987-2997, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).
    2. Zhang, Quanda & Appau, Samuelson & Kodom, Peter Lord, 2021. "Energy poverty, children's wellbeing and the mediating role of academic performance: Evidence from China," Energy Economics, Elsevier, vol. 97(C).
    3. Yiming Xiao & Han Wu & Guohua Wang & Shangrui Wang, 2021. "The Relationship between Energy Poverty and Individual Development: Exploring the Serial Mediating Effects of Learning Behavior and Health Condition," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    4. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    5. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Ioanna Kyprianou & Despina Serghides & Harriet Thomson & Salvatore Carlucci, 2023. "Learning from the Past: The Impacts of Economic Crises on Energy Poverty Mortality and Rural Vulnerability," Energies, MDPI, vol. 16(13), pages 1-13, July.
    7. Frempong, Raymond Boadi & Orkoh, Emmanuel & Kofinti, Raymond Elikplim, 2021. "Household's use of cooking gas and Children's learning outcomes in rural Ghana," Energy Economics, Elsevier, vol. 103(C).
    8. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    9. Burlinson, Andrew & Giulietti, Monica & Law, Cherry & Liu, Hui-Hsuan, 2021. "Fuel poverty and financial distress," Energy Economics, Elsevier, vol. 102(C).
    10. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    11. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    12. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    13. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    14. Jun Zhang & Yuang He & Jing Zhang, 2022. "Energy Poverty and Depression in Rural China: Evidence from the Quantile Regression Approach," IJERPH, MDPI, vol. 19(2), pages 1-21, January.
    15. Itziar Modrego-Monforte & Mikel Barrena-Herrán & Olatz Grijalba, 2023. "A Multi-Criteria Analysis GIS Tool for Measuring the Vulnerability of the Residential Stock Based on Multidimensional Indices," Land, MDPI, vol. 12(8), pages 1-16, August.
    16. Sen, Kanchan Kumar & Karmaker, Shamal Chandra & Hosan, Shahadat & Chapman, Andrew J. & Uddin, Md Kamal & Saha, Bidyut Baran, 2023. "Energy poverty alleviation through financial inclusion: Role of gender in Bangladesh," Energy, Elsevier, vol. 282(C).
    17. Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
    18. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    19. Meltem Ucal & Simge Günay, 2022. "Household Happiness and Fuel Poverty: a Cross-Sectional Analysis on Turkey," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 17(1), pages 391-420, February.
    20. Gultom, Yohanna M.L., 2021. "When extractive political institutions affect public-private partnerships: Empirical evidence from Indonesia's independent power producers under two political regimes," Energy Policy, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12173-:d:1213595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.