IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p12037-d1211596.html
   My bibliography  Save this article

An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans

Author

Listed:
  • Ștefan Ionescu

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 0105552 Bucharest, Romania)

  • Nora Chiriță

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 0105552 Bucharest, Romania)

  • Ionuț Nica

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 0105552 Bucharest, Romania)

  • Camelia Delcea

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 0105552 Bucharest, Romania)

Abstract

The uncertainty of the environment, the complexity of economic systems, both at the national and global economy levels, and the digital age and artificial intelligence draw attention to the existence or appearance of systemic, disruptive phenomena that can appear and propagate in different forms, producing effects that can turn into economic crises. These phenomena can be transmitted like a domino effect, and they are referred to as the contagion effect in the scientific literature. In this research, one of the four forms of financial contagion, known as residual contagion, is studied on the mortgage loan market in Romania using agent-based modeling. By considering the economic crisis of 2007–2009, also supported by the mortgage crisis, in the present paper, we aim to study the Romanian mortgage market in 2022 through the use of machine learning techniques and agent-based modeling. The purpose of this research is to capture the potential systemic risks that can outline a residual financial contagion effect. The simulation results highlight the fact that the degree of connectivity between the commercial banks in Romania and the way in which they are interconnected have a major importance in the emergence and propagation of contagion effects. The proposed approach and the obtained results can offer more insight to policymakers on how the contagion effect takes place within the banking sector.

Suggested Citation

  • Ștefan Ionescu & Nora Chiriță & Ionuț Nica & Camelia Delcea, 2023. "An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans," Sustainability, MDPI, vol. 15(15), pages 1-32, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12037-:d:1211596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/12037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/12037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongyi Li & Heng-fu Zou, 2002. "Inflation, Growth, and Income Distribution: A Cross-Country Study," Annals of Economics and Finance, Society for AEF, vol. 3(1), pages 85-101, May.
    2. Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    4. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    5. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835164, HAL.
    6. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Post-Print halshs-01889154, HAL.
    7. Robert F. Bruner & Scott C. Miller, 2020. "The First Modern Financial Crises: The South Sea and Mississippi Bubbles in Historical Perspective," Journal of Applied Corporate Finance, Morgan Stanley, vol. 32(4), pages 17-33, December.
    8. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
    9. Ionuț Nica & Daniela Blană Alexandru & Simona Liliana Paramon Crăciunescu & Ștefan Ionescu, 2021. "Automated Valuation Modelling: Analysing Mortgage Behavioural Life Profile Models Using Machine Learning Techniques," Sustainability, MDPI, vol. 13(9), pages 1-27, May.
    10. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01719983, HAL.
    11. Athanasios Tsagkanos & Aarzoo Sharma & Bikramaditya Ghosh, 2022. "Green Bonds and Commodities: A New Asymmetric Sustainable Relationship," Sustainability, MDPI, vol. 14(11), pages 1-16, June.
    12. John H. Miller & Scott E. Page, 2007. "Social Science in Between, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    13. Dinesh Gajurel & Mardi Dungey, 2023. "Systematic Contagion Effects of the Global Finance Crisis: Evidence from the World’s Largest Advanced and Emerging Equity Markets," JRFM, MDPI, vol. 16(3), pages 1-20, March.
    14. John H. Miller & Scott E. Page, 2007. "Complexity in Social Worlds, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    15. Nick Costanzino & Michael Curran, 2018. "A Simple Traffic Light Approach to Backtesting Expected Shortfall," Risks, MDPI, vol. 6(1), pages 1-7, January.
    16. Beibei Zhang & Xuemei Xie & Chunmei Li, 2023. "How Connected Is China’s Systemic Financial Risk Contagion Network?—A Dynamic Network Perspective Analysis," Mathematics, MDPI, vol. 11(10), pages 1-19, May.
    17. Farmer, J. Doyne & Axtell, Robert L., 2022. "Agent-Based Modeling in Economics and Finance: Past, Present, and Future," INET Oxford Working Papers 2022-10, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    18. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
    19. Silva, Thiago Christiano & da Silva, Michel Alexandre & Tabak, Benjamin Miranda, 2017. "Systemic risk in financial systems: A feedback approach," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 97-120.
    20. Yu Hsing, 2011. "The Stock Market and Macroeconomic Variables in a BRICS Country and Policy Implications," International Journal of Economics and Financial Issues, Econjournals, vol. 1(1), pages 12-18.
    21. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01889154, HAL.
    22. Elena Valentina Țilică, 2021. "Financial Contagion Patterns in Individual Economic Sectors. The Day-of-the-Week Effect from the Polish, Russian and Romanian Markets," JRFM, MDPI, vol. 14(9), pages 1-28, September.
    23. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Post-Print halshs-01719983, HAL.
    24. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    25. Mr. Jorge A Chan-Lau, 2017. "ABBA: An Agent-Based Model of the Banking System," IMF Working Papers 2017/136, International Monetary Fund.
    26. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    27. Ioan TRENCA & Eva DEZSI, 2012. "Financial contagion on the Romanian stock market," Finante - provocarile viitorului (Finance - Challenges of the Future), University of Craiova, Faculty of Economics and Business Administration, vol. 1(14), pages 27-36, December.
    28. Hicham Sadok & Fadi Sakka & Mohammed El Hadi El Maknouzi, 2022. "Artificial intelligence and bank credit analysis: A review," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2023262-202, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ionuț Nica & Daniela Blană Alexandru & Simona Liliana Paramon Crăciunescu & Ștefan Ionescu, 2021. "Automated Valuation Modelling: Analysing Mortgage Behavioural Life Profile Models Using Machine Learning Techniques," Sustainability, MDPI, vol. 13(9), pages 1-27, May.
    2. Seyyide Doğan & Yasin Büyükkör & Murat Atan, 2022. "A comparative study of corporate credit ratings prediction with machine learning," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 25-47.
    3. Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
    4. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    5. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    6. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    7. Theuri, Joseph & Olukuru, John, 2022. "The impact of Artficial Intelligence and how it is shaping banking," KBA Centre for Research on Financial Markets and Policy Working Paper Series 61, Kenya Bankers Association (KBA).
    8. José Américo Pereira Antunes, 2021. "To supervise or to self-supervise: a machine learning based comparison on credit supervision," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-21, December.
    9. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    10. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    11. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    12. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    13. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    14. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    15. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
    16. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    17. Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50.
    18. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    19. A. R. Provenzano & D. Trifir`o & A. Datteo & L. Giada & N. Jean & A. Riciputi & G. Le Pera & M. Spadaccino & L. Massaron & C. Nordio, 2020. "Machine Learning approach for Credit Scoring," Papers 2008.01687, arXiv.org.
    20. Yaseen Ghulam & Kamini Dhruva & Sana Naseem & Sophie Hill, 2018. "The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans," Risks, MDPI, vol. 6(3), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12037-:d:1211596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.