IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11701-d1205617.html
   My bibliography  Save this article

Comprehensive Research on the Near-Zero Energy Consumption of an Office Building in Hefei Based on a Photovoltaic Curtain Wall

Author

Listed:
  • Haitao Wang

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Fanghao Wu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Ning Lu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Jianfeng Zhai

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract

The near-zero energy design of a building is linked to the regional climate in which the building is located. On the basis of studying the cavity size and ground height of a photovoltaic curtain wall, the power generation efficiency of the photovoltaic curtain wall under different ground heights is compared in this paper. According to the “Technical Standard for Near-Zero Energy Buildings”, the personnel and lighting of a 12-m office building in Hefei were parametrically arranged and three design schemes for near-zero energy buildings were proposed. The energy consumption of the benchmark building and the design energy consumption of each scheme were calculated by using the energy consumption simulation software Design Builder V 7.0.0.096; the feasibility of realizing the near-zero energy consumption building by using each scheme was checked. The results show that when the cavity width of the photovoltaic curtain wall of the office building is 70 mm, the cavity heat transfer coefficient is the lowest and the heat insulation of the building is the best. When the height from the ground is 0.7 m, the power generation efficiency of the photovoltaic curtain wall reaches a maximum of 18.39% and the south façade of the building is more suitable for the layout and installation of the photovoltaic curtain wall. The single-façade photovoltaic curtain wall should be combined with a high-efficiency air conditioning system and lighting system; the installation of a photovoltaic rooftop at the same time can meet the design requirements of near-zero energy buildings in hot-summer and cold-winter areas. This paper provides some guidance for exploring the design of near-zero energy office buildings, which is of practical significance.

Suggested Citation

  • Haitao Wang & Fanghao Wu & Ning Lu & Jianfeng Zhai, 2023. "Comprehensive Research on the Near-Zero Energy Consumption of an Office Building in Hefei Based on a Photovoltaic Curtain Wall," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11701-:d:1205617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi, Haozhi & Huang, Xucheng & Sheeraz, Muhammad, 2023. "Green financing for renewable energy development: Driving the attainment of zero-emission targets," Renewable Energy, Elsevier, vol. 213(C), pages 30-37.
    2. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Li, Houpei & Wang, Meng & Zhang, Fujia & Ji, Jie & Song, Aotian, 2023. "Daylight-electrical-thermal coupling model for real-time zero-energy potential analysis of vacuum-photovoltaic glazing," Renewable Energy, Elsevier, vol. 205(C), pages 1040-1056.
    4. Capizzi, Giacomo & Sciuto, Grazia Lo & Cammarata, Giuliano & Cammarata, Massimiliano, 2017. "Thermal transients simulations of a building by a dynamic model based on thermal-electrical analogy: Evaluation and implementation issue," Applied Energy, Elsevier, vol. 199(C), pages 323-334.
    5. Xiaomiao Liao & Wanjiang Wang & Yihuan Zhou, 2023. "Investigating the Energy-Saving Effectiveness of Envelope Retrofits and Photovoltaic Systems: A Case Study of a Hotel in Urumqi," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    6. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    7. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    8. Kotarela, Faidra & Kyritsis, Anastasios & Agathokleous, Rafaela & Papanikolaou, Nick, 2023. "On the exploitation of dynamic simulations for the design of buildings energy systems," Energy, Elsevier, vol. 271(C).
    9. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Yang, Jianming & Zhuang, Haojie & Liang, Yuying & Cen, Jian & Zhang, Xianyong & Li, Li & Li, Peng & Qiu, Runlong, 2024. "A novel vacuum-photovoltaic glazing integrated thermoelectric cooler/warmer for environmental adaptation: thermal performance modelling," Renewable Energy, Elsevier, vol. 229(C).
    3. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    4. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    5. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Gonçalves, M. & Figueiredo, A. & Almeida, R.M.S.F. & Vicente, R., 2024. "Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
    8. Wu, Zhuochun & Kang, Jidong & Mosteiro-Romero, Martín & Bartolini, Andrea & Ng, Tsan Sheng & Su, Bin, 2024. "A distributionally robust optimization model for building-integrated photovoltaic system expansion planning under demand and irradiance uncertainties," Applied Energy, Elsevier, vol. 372(C).
    9. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    10. Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
    11. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).
    12. Roberts, Frank & Yang, Siliang & Du, Hu & Yang, Rebecca, 2023. "Effect of semi-transparent a-Si PV glazing within double-skin façades on visual and energy performances under the UK climate condition," Renewable Energy, Elsevier, vol. 207(C), pages 601-610.
    13. Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
    14. Siti Fatihah Salleh & Ahmad Abubakar Suleiman & Hanita Daud & Mahmod Othman & Rajalingam Sokkalingam & Karl Wagner, 2023. "Tropically Adapted Passive Building: A Descriptive-Analytical Approach Using Multiple Linear Regression and Probability Models to Predict Indoor Temperature," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    15. Liu, Keke & Wang, Meng & Peng, Jinqing & Li, Sihui & Luo, Yimo & Zhang, Xiaofeng, 2024. "Effect of angle of incidence on the optical-electrical-thermal performance of photovoltaic insulated glass units," Renewable Energy, Elsevier, vol. 226(C).
    16. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    17. Miralles-Quirós, José Luis & Miralles-Quirós, María Mar, 2024. "Factor models and investment strategies in the renewable energy sector," Energy Economics, Elsevier, vol. 132(C).
    18. Qiu, Changyu & Yang, Hongxing, 2022. "Dynamic coupling of a heat transfer model and whole building simulation for a novel cadmium telluride-based vacuum photovoltaic glazing," Energy, Elsevier, vol. 250(C).
    19. Bre, Facundo & Lamberts, Roberto & Flores-Larsen, Silvana & Koenders, Eduardus A.B., 2023. "Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures," Applied Energy, Elsevier, vol. 336(C).
    20. Ramakrishnan Iyer & Aritra Ghosh, 2023. "Investigation of Integrated and Non-Integrated Thermoelectric Systems for Buildings—A Review," Energies, MDPI, vol. 16(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11701-:d:1205617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.