IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11254-d1197605.html
   My bibliography  Save this article

Utilization of Waste Glass Cullet as Partial Substitutions of Coarse Aggregate to Produce Eco-Friendly Concrete: Role of Metakaolin as Cement Replacement

Author

Listed:
  • Noor Md. Sadiqul Hasan

    (Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Nur Mohammad Nazmus Shaurdho

    (Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Md. Habibur Rahman Sobuz

    (Department of Building Engineering and Construction Management, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh)

  • Md. Montaseer Meraz

    (Department of Building Engineering and Construction Management, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh)

  • Md. Saidul Islam

    (Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Md Jihad Miah

    (Department of Civil and Architectural Engineering, Aarhus University, 8000 Aarhus, Denmark)

Abstract

The utilization of waste products is becoming a vital aspect of the construction industry to safeguard environmental assets and mitigate pollution, all of which lead to long-term sustainable development. From this perspective, this experimental investigation was carried out to determine the cumulative influence of waste glass cullet and metakaolin (MK) as partial replacements for coarse aggregates and cement in an isolated and combined manner. This research demonstrated the influence of integrating glass aggregate and metakaolin wherein coarse aggregate was substituted by 10%, 15%, 20%, 25%, and 30% glass cullet (by weight), and cement was supplemented with 10% metakaolin. The substitution of waste glass with coarse aggregate significantly declines the compressive strength correspondingly; however, the integration of 10% metakaolin powder enhanced the strength slightly for all specimens up to 25%. On the other hand, for flexural strength, the inclusion of glass waste in concrete reduced the performance, whereas the incorporation of metakaolin boosted the strength but did not achieve greater strength compared to the control mixture. The sustainability analysis revealed that the production cost and eCO 2 emission could be reduced by 15% and 7% by incorporating glass cullet and metakaolin in the concrete mix, which satisfied sustainability. Based on the experimental results, the ideal proportion substitution would be 25% glass aggregate with 10% metakaolin, which could satisfactorily be used to generate sustainable concrete.

Suggested Citation

  • Noor Md. Sadiqul Hasan & Nur Mohammad Nazmus Shaurdho & Md. Habibur Rahman Sobuz & Md. Montaseer Meraz & Md. Saidul Islam & Md Jihad Miah, 2023. "Utilization of Waste Glass Cullet as Partial Substitutions of Coarse Aggregate to Produce Eco-Friendly Concrete: Role of Metakaolin as Cement Replacement," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11254-:d:1197605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herbert Sinduja Joseph & Thamilselvi Pachiappan & Siva Avudaiappan & Nelson Maureira-Carsalade & Ángel Roco-Videla & Pablo Guindos & Pablo F. Parra, 2023. "A Comprehensive Review on Recycling of Construction Demolition Waste in Concrete," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    2. Jad Bawab & Jamal Khatib & Hilal El-Hassan & Lateef Assi & Mehmet Serkan Kırgız, 2021. "Properties of Cement-Based Materials Containing Cathode-Ray Tube (CRT) Glass Waste as Fine Aggregates—A Review," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    3. Stephen Babajide Olabimtan & Mohammad Ali Mosaberpanah, 2023. "The Implementation of a Binary Blend of Waste Glass Powder and Coal Bottom Ash as a Partial Cement Replacement toward More Sustainable Mortar Production," Sustainability, MDPI, vol. 15(11), pages 1-30, May.
    4. Reza Homayoonmehr & Ali Akbar Ramezanianpour & Faramarz Moodi & Amir Mohammad Ramezanianpour & Juan Pablo Gevaudan, 2022. "A Review on the Effect of Metakaolin on the Chloride Binding of Concrete, Mortar, and Paste Specimens," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengyuan Yang & Chenxi Yang & Chao Jin & Tie Liu & Renshuang Li & Jun Jiang & Yanping Wu & Zhongyuan Lu & Jun Li, 2024. "Pore Structure, Hardened Performance and Sandwich Wallboard Application of Construction and Demolition Waste Residue Soil Recycled Foamed Concrete," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    2. R. Saravanakumar & K. S. Elango & V. Revathi & D. Balaji, 2024. "Influence of Aggressive Environment in Macro and Microstructural Properties of Bottom Ash Geopolymer Concrete," Sustainability, MDPI, vol. 16(5), pages 1-17, February.
    3. Jan Skocek & Alexandre Ouzia & Encarnacion Vargas Serrano & Nicolas Pato, 2024. "Recycled Sand and Aggregates for Structural Concrete: Toward the Industrial Production of High-Quality Recycled Materials with Low Water Absorption," Sustainability, MDPI, vol. 16(2), pages 1-31, January.
    4. Han Zhang & Shiying Shi & Fangfang Zhao & Mingming Hu & Xiao Fu, 2024. "Integrated Benefits of Sustainable Utilization of Construction and Demolition Waste in a Pressure-State-Response Framework," Sustainability, MDPI, vol. 16(19), pages 1-24, September.
    5. Silvia Serranti & Roberta Palmieri & Giuseppe Bonifazi & Riccardo Gasbarrone & Gauthier Hermant & Herve Bréquel, 2023. "An Automated Classification of Recycled Aggregates for the Evaluation of Product Standard Compliance," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    6. Mohamed Amin & Ibrahim Saad Agwa & Nuha Mashaan & Shaker Mahmood & Mahmoud H. Abd-Elrahman, 2023. "Investigation of the Physical Mechanical Properties and Durability of Sustainable Ultra-High Performance Concrete with Recycled Waste Glass," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    7. Joud Hwalla & Jad Bawab & Hilal El-Hassan & Feras Abu Obaida & Tamer El-Maaddawy, 2023. "Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications," Sustainability, MDPI, vol. 15(14), pages 1-37, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11254-:d:1197605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.