IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10773-d1190175.html
   My bibliography  Save this article

Evaluation and Design of Parameterized Dynamic Daylighting for Large-Space Buildings

Author

Listed:
  • Hao Hu

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)

  • Hui Zhang

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)

  • Li Wang

    (Zhongnan Architectural Design Institute Co., Ltd., Wuhan 430061, China)

  • Zikang Ke

    (School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)

Abstract

This study aimed to promote the use of natural lighting in building designs to create a good lighting environment and to save energy. Dynamic daylight evaluation and analysis have become hot research topics due to the influence of outdoor light climate changes that occur throughout the season and over a period of time. However, there are certain gaps in the application of dynamic daylight evaluation for large-space buildings. In China, static daylight evaluation is mainly used to assess the actual daylighting performance of buildings. The Hangzhou E-sports Center in China was selected as the study object in this research, and dynamic daylight simulations were conducted using Rhino + Grasshopper and Ladybug + Honeybee for different representative days in each season and in each measurement zone. Spatial daylight autonomy (sDA) and useful daylight illuminance (UDI) were used as the dynamic daylight evaluation indicators, and a parameterized dynamic daylight evaluation method was proposed for evaluating the design scheme. By comparing the initial and optimized design schemes, the results showed the following: (1) the optimized scheme increased the ratio of area and time within the UDI 100–2000 lux range, and areas with an sDA >300 lux accounted for over 55% of the primary use areas, indicating a significant improvement in the daylighting quality of the large space; (2) the daylighting quality of the large space building showed seasonal changes, with the best daylighting quality occurring during the summer solstice and the worst occurring on the winter solstice, while the daylighting quality was similar during the spring and autumn equinoxes; (3) the dynamic evaluation metrics facilitated the identification of daylighting issues in large-scale buildings more effectively; (4) the parameterized method proposed in this study can solve the cumbersome process of daylight simulation and is more conducive to the adjustment and optimization of design schemes by designers. The parameterized dynamic daylight evaluation method proposed in this study provides references and ideas for the design and research of daylighting in other large-space buildings.

Suggested Citation

  • Hao Hu & Hui Zhang & Li Wang & Zikang Ke, 2023. "Evaluation and Design of Parameterized Dynamic Daylighting for Large-Space Buildings," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10773-:d:1190175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chirarattananon, Surapong & Chaiwiwatworakul, Pipat & Pattanasethanon, Singthong, 2002. "Daylight availability and models for global and diffuse horizontal illuminance and irradiance for Bangkok," Renewable Energy, Elsevier, vol. 26(1), pages 69-89.
    2. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    3. Massimiliano Manfren & Benedetto Nastasi, 2020. "Parametric Performance Analysis and Energy Model Calibration Workflow Integration—A Scalable Approach for Buildings," Energies, MDPI, vol. 13(3), pages 1-14, February.
    4. Lam, Joseph C., 1996. "An analysis of residential sector energy use in Hong Kong," Energy, Elsevier, vol. 21(1), pages 1-8.
    5. Xianfeng Huang & Shangyou Wei & Shangyu Zhu, 2020. "Study on Daylighting Optimization in the Exhibition Halls of Museums for Chinese Calligraphy and Painting Works," Energies, MDPI, vol. 13(1), pages 1-15, January.
    6. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization—A Review," Energies, MDPI, vol. 10(5), pages 1-18, May.
    7. Kotireddy, Rajesh & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "A methodology for performance robustness assessment of low-energy buildings using scenario analysis," Applied Energy, Elsevier, vol. 212(C), pages 428-442.
    8. Chel, Arvind & Tiwari, G.N. & Singh, H.N., 2010. "A modified model for estimation of daylight factor for skylight integrated with dome roof structure of mud-house in New Delhi (India)," Applied Energy, Elsevier, vol. 87(10), pages 3037-3050, October.
    9. Mimi Ravn & Gabriela Mach & Ellen Kathrine Hansen & Georgios Triantafyllidis, 2022. "Simulating Physiological Potentials of Daylight Variables in Lighting Design," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
    10. Ochoa, Carlos E. & Aries, Myriam B.C. & van Loenen, Evert J. & Hensen, Jan L.M., 2012. "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Applied Energy, Elsevier, vol. 95(C), pages 238-245.
    11. Ali Mohammed AL-Dossary & Daeung Danny Kim, 2020. "A Study of Design Variables in Daylight and Energy Performance in Residential Buildings under Hot Climates," Energies, MDPI, vol. 13(21), pages 1-16, November.
    12. Chang Heon Cheong & Taeyeon Kim & Seung-Bok Leigh, 2014. "Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea," Sustainability, MDPI, vol. 6(10), pages 1-23, October.
    13. Yibing Xue & Wenhan Liu, 2022. "A Study on Parametric Design Method for Optimization of Daylight in Commercial Building’s Atrium in Cold Regions," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    2. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    3. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    4. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    5. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
    6. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    7. Xue, Peng & Li, Qian & Xie, Jingchao & Zhao, Mengjing & Liu, Jiaping, 2019. "Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements," Applied Energy, Elsevier, vol. 233, pages 62-70.
    8. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    9. Sun, Yanyi & Wu, Yupeng & Wilson, Robin, 2018. "A review of thermal and optical characterisation of complex window systems and their building performance prediction," Applied Energy, Elsevier, vol. 222(C), pages 729-747.
    10. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    11. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
    12. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
    13. Xie, Jing Chao & Xue, Peng & Mak, Cheuk Ming & Liu, Jia Ping, 2017. "Balancing energy and daylighting performances for envelope design: A new index and proposition of a case study in Hong Kong," Applied Energy, Elsevier, vol. 205(C), pages 13-22.
    14. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    15. Kunhao Liu & Lianglin Zou & Yuanlong Li & Kai Wang & Haiyu Wang & Jifeng Song, 2023. "Measurement and Analysis of Light Leakage in Plastic Optical Fiber Daylighting System," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    16. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    17. Yibing Xue & Wenhan Liu, 2022. "A Study on Parametric Design Method for Optimization of Daylight in Commercial Building’s Atrium in Cold Regions," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    18. Zhai, Yingni & Wang, Yi & Huang, Yanqiu & Meng, Xiaojing, 2019. "A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance," Renewable Energy, Elsevier, vol. 134(C), pages 1190-1199.
    19. Simone Giostra & Ayush Kamalia & Gabriele Masera, 2024. "Solar Species: Energy Optimization of Urban Form Through an Evolutionary Design Process," Sustainability, MDPI, vol. 16(21), pages 1-27, October.
    20. Qibo Liu & Xiao Han & Yuheng Yan & Juan Ren, 2023. "A Parametric Design Method for the Lighting Environment of a Library Building Based on Building Performance Evaluation," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10773-:d:1190175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.