IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9864-d1175802.html
   My bibliography  Save this article

Sustainable Eco-Friendly Synthesis of Zinc Oxide Nanoparticles Using Banana Peel and Date Seed Extracts, Characterization, and Cytotoxicity Evaluation

Author

Listed:
  • Nahed Ahmed Hussien

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Jamila S. Al Malki

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Farah A. R. Al Harthy

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Asrar W. Mazi

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Jumanh A. A. Al Shadadi

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

Abstract

This study describes the use of banana peel (BPEs) and date seed extracts (DSEs) as waste products in the sustainable and eco-friendly biological synthesis of zinc oxide nanoparticles (ZnONPs). ZnONPs_BPE and ZnONPs_DSE were characterized using an ultraviolet-visible spectrophotometer (UV-VIS), Scanning (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential analysis, and Fourier transform infrared (FTIR) spectroscopy. Moreover, the biocompatibility of ZnONPs was analyzed against the normal human skin fibroblast (HSF) cell line. Peaks of UV spectra were 300 nm and 400 nm for ZnONPs-BPE and for ZnONP _DSE, respectively, confirming the ZnONPs’ formation. XRD revealed their hexagonal structure. SEM showed the nanocrystals of ZnONPs_BPE, which are interlinked to one another in a uniform shape, while ZnONPs_DSE appear as large and small chunky crystals. The mean size of ZnONPs_BPE and ZnONPs_DSE was 50 nm and 62 nm using TEM, respectively. On the contrary, their mean size was bigger using DLS with the zeta potential of ZnONPs_BPE = −12.7 mV and ZnONPs_DSE = −5.69 mV. The FTIR analysis demonstrated the presence of carboxyl, hydroxyl, and C–H of cellulose, hemicelluloses, and lignin polymers on ZnONPs surfaces that act as reducing, capping, and stabilizing agents. ZnONPs_BPE (IC50 > 100) have lower cytotoxic effects on HSF cells than ZnONPs_DSE (IC50 = 29.34 μg/mL). The present study indicates the successful synthesis of ZnONPs using agro-wastes that could help in waste management and recycling. Furthermore, ZnONPs_BPE is safe to use for further applications.

Suggested Citation

  • Nahed Ahmed Hussien & Jamila S. Al Malki & Farah A. R. Al Harthy & Asrar W. Mazi & Jumanh A. A. Al Shadadi, 2023. "Sustainable Eco-Friendly Synthesis of Zinc Oxide Nanoparticles Using Banana Peel and Date Seed Extracts, Characterization, and Cytotoxicity Evaluation," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9864-:d:1175802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    2. Sulaiman Al Yahya & Tahir Iqbal & Muhammad Mubashar Omar & Munir Ahmad, 2021. "Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia," Energies, MDPI, vol. 14(19), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samy Yousef & Vidas Lekavičius & Nerijus Striūgas, 2023. "Techno-Economic Analysis of Thermochemical Conversion of Waste Masks Generated in the EU during COVID-19 Pandemic into Energy Products," Energies, MDPI, vol. 16(9), pages 1-14, May.
    2. Muhammad Sultan & Muhammad Hamid Mahmood & Md Shamim Ahamed & Redmond R. Shamshiri & Muhammad Wakil Shahzad, 2022. "Energy Systems and Applications in Agriculture," Energies, MDPI, vol. 15(23), pages 1-3, December.
    3. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Anastasia Zabaniotou & Ioannis Vaskalis, 2023. "Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis," Energies, MDPI, vol. 16(2), pages 1-26, January.
    5. Nourhen Hsini & Vahid Saadattalab & Xia Wang & Nawres Gharred & Hatem Dhaouadi & Sonia Dridi-Dhaouadi & Niklas Hedin, 2022. "Activated Carbons Produced from Hydrothermally Carbonized Prickly Pear Seed Waste," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    6. Djaafri, Mohammed & Drissi, Aicha & Mehdaoui, Sabrina & Kalloum, Slimane & Atelge, M.R. & Khelafi, Mostefa & Kaidi, Kamel & Salem, Fethya & Tahri, Ahmed & Atabani, A.E. & Štěpanec, Libor, 2023. "Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H'mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study," Energy, Elsevier, vol. 269(C).
    7. Mendoza-Martinez, Clara & Sermyagina, Ekaterina & Saari, Jussi & Ramos, Vinicius Faria & Vakkilainen, Esa & Cardoso, Marcelo & Alves Rocha, Elém Patrícia, 2023. "Fast oxidative pyrolysis of eucalyptus wood residues to replace fossil oil in pulp industry," Energy, Elsevier, vol. 263(PE).
    8. Marcelina Sołtysik & Izabela Majchrzak-Kucęba & Dariusz Wawrzyńczak, 2022. "Bio-Waste as a Substitute for the Production of Carbon Dioxide Adsorbents: A Review," Energies, MDPI, vol. 15(19), pages 1-23, September.
    9. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    10. Anderson Rocha Amaral & Lucas Pinto Bernar & Caio Campos Ferreira & Anderson Mathias Pereira & Wenderson Gomes Dos Santos & Lia Martins Pereira & Marcelo Costa Santos & Fernanda Paula da Costa Assunçã, 2023. "Economic Analysis of Thermal–Catalytic Process of Palm Oil ( Elaeis guineesensis, Jacq) and Soap Phase Residue from Neutralization Process of Palm Oil ( Elaeis guineensis , Jacq)," Energies, MDPI, vol. 16(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9864-:d:1175802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.