IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10629-d1187695.html
   My bibliography  Save this article

Design and Performance Analysis of New Multilevel Inverter for PV System

Author

Listed:
  • Rabail Memon

    (Department of Electrical Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan)

  • Mukhtiar Ahmed Mahar

    (Department of Electrical Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan)

  • Abdul Sattar Larik

    (Department of Electrical Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan)

  • Syed Asif Ali Shah

    (Department of Electrical Engineering, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan)

Abstract

Multilevel inverters (MLIs) have recently attracted more attention in medium-voltage and high-power applications as they can provide an effective interface with photovoltaic (PV) systems. Conventional MLIs are used to generate higher voltage levels, which improve power quality and reduce the requirement for passive filters. However, recent research has focused on designing new MLI topologies using reduced switch counts and less voltage stress. This study, as such, proposes a new nine-level symmetric MLI for PV systems with a minimum number of switches. This decrease in the number of switches reduces the voltage stress across the switches and the number of driving circuits, which lowers the complexity of the control circuit and, as a result, lowers the cost and size of the system. This article compares the proposed MLI with other topologies based on the DC sources, switches count, gate driver circuits (N gd ), total standing voltage per unit (TSV PU ), cost function (CF), and components count per level (CC/L). The proposed topology is integrated with the PV system. MATLAB software is used to evaluate the performance of MLI at step change in irradiance and under variable load conditions. The total harmonic distortion (THD) of the proposed topology is reduced with the implementation of phase disposition pulse width modulation (PD-PWM). In addition, PD-PWM is compared with phase opposition disposition pulse width modulation (POD-PWM) and alternative phase opposition disposition pulse width (APOD-PWM) modulation techniques. The simulation results reveal the improved performance of the proposed topology at variable irradiance and under varying load conditions. The comparison results reveal minimum (TSV PU ), CC/L, CF, and switch count compared to existing topologies. Hence, the proposed topology of MLI is cost-effective and superior in all aspects compared to other topologies. In summary, it offers overall improved performance, and thus, it is feasible for the PV system.

Suggested Citation

  • Rabail Memon & Mukhtiar Ahmed Mahar & Abdul Sattar Larik & Syed Asif Ali Shah, 2023. "Design and Performance Analysis of New Multilevel Inverter for PV System," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10629-:d:1187695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalsoom Bano & Ghulam Abbas & Mohammed Hatatah & Ezzeddine Touti & Ahmed Emara & Paolo Mercorelli, 2024. "Phase Shift APOD and POD Control Technique in Multi-Level Inverters to Mitigate Total Harmonic Distortion," Mathematics, MDPI, vol. 12(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio A. Garcia-Santiago & Julio C. Rosas-Caro & Jesus E. Valdez-Resendiz & Jonathan C. Mayo-Maldonado & Antonio Valderrabano-Gonzalez & Hector R. Robles-Campos, 2022. "Single-Phase Five-Level Multilevel Inverter Based on a Transistors Six-Pack Module," Energies, MDPI, vol. 15(24), pages 1-21, December.
    2. Muhyaddin Rawa & Prem P & Jagabar Sathik Mohamed Ali & Marif Daula Siddique & Saad Mekhilef & Addy Wahyudie & Mehdi Seyedmahmoudian & Alex Stojcevski, 2021. "A New Multilevel Inverter Topology with Reduced DC Sources," Energies, MDPI, vol. 14(15), pages 1-21, August.
    3. Muhammad Ayyaz Tariq & Umar Tabrez Shami & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "Dragonfly Algorithm-Based Optimization for Selective Harmonics Elimination in Cascaded H-Bridge Multilevel Inverters with Statistical Comparison," Energies, MDPI, vol. 15(18), pages 1-18, September.
    4. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    5. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    6. Saud Alotaibi & Xiandong Ma & Ahmed Darwish, 2022. "Dual Isolated Multilevel Modular Inverter with Novel Switching and Voltage Stress Suppression," Energies, MDPI, vol. 15(14), pages 1-18, July.
    7. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    8. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    9. Mohamed Salem & Anna Richelli & Khalid Yahya & Muhammad Najwan Hamidi & Tze-Zhang Ang & Ibrahim Alhamrouni, 2022. "A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications," Energies, MDPI, vol. 15(17), pages 1-40, August.
    10. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    11. Md. Tariqul Islam & Md. Ahsanul Alam & Molla Shahadat Hossain Lipu & Kamrul Hasan & Sheikh Tanzim Meraj & Hasan Masrur & Md. Fayzur Rahman, 2023. "A Single DC Source Five-Level Switched Capacitor Inverter for Grid-Integrated Solar Photovoltaic System: Modeling and Performance Investigation," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    12. Anna Richelli, 2021. "Current Research on Embedded DC/DC Converters," Energies, MDPI, vol. 14(19), pages 1-2, September.
    13. Ismail Aouichak & Sébastien Jacques & Sébastien Bissey & Cédric Reymond & Téo Besson & Jean-Charles Le Bunetel, 2022. "A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector," Energies, MDPI, vol. 15(3), pages 1-19, February.
    14. Ahmed Darwish & George A. Aggidis, 2022. "A Review on Power Electronic Topologies and Control for Wave Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    15. Abdul Mannan Rauf & Mohamed Abdel-Monem & Thomas Geury & Omar Hegazy, 2023. "A Review on Multilevel Converters for Efficient Integration of Battery Systems in Stationary Applications," Energies, MDPI, vol. 16(10), pages 1-38, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10629-:d:1187695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.