IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8405-d1152782.html
   My bibliography  Save this article

A Single DC Source Five-Level Switched Capacitor Inverter for Grid-Integrated Solar Photovoltaic System: Modeling and Performance Investigation

Author

Listed:
  • Md. Tariqul Islam

    (Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh)

  • Md. Ahsanul Alam

    (Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh)

  • Molla Shahadat Hossain Lipu

    (Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh)

  • Kamrul Hasan

    (School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia)

  • Sheikh Tanzim Meraj

    (Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Hasan Masrur

    (Interdisciplinary Research Center of Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Md. Fayzur Rahman

    (Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka 1207, Bangladesh)

Abstract

Boost converters and multilevel inverters (MLI) are frequently included in low-voltage solar photovoltaic (PV) systems for grid integration. However, the use of an inductor-based boost converter makes the system bulky and increases control complexity. Therefore, the switched-capacitor-based MLI emerges as an efficient DC/AC voltage convertor with boosting capability. To make classical topologies more efficient and cost-effective for sustainable power generation, newer topologies and control techniques are continually evolving. This paper proposes a reduced-component-count five-level inverter design for generating stable AC voltages for sustainable grid-integrated solar photovoltaic applications. The proposed topology uses seven switching devices of lower total standing voltage (TSV), three diodes, and two DC-link capacitors to generate five-level outputs. By charging and discharging cycles, the DC capacitor voltages are automatically balanced. Thus, no additional sensors or control circuitry is required. It has inherent voltage-boosting capability without any input boost converter. A low-frequency-based half-height (HH) modulation technique is employed in the standalone system for better voltage quality. Extensive simulations are performed in a MATLAB/Simulink environment to estimate the performance of the proposed topology, and 17.58% THDs are obtained in the phase voltages. Using a small inductor in series or an inductive load, the current THD reduces to 8.23%. Better dynamic performance is also observed with different loading conditions. A miniature five-level single-phase laboratory prototype is developed to verify the accuracy of the simulation results and the viability of the proposed topology.

Suggested Citation

  • Md. Tariqul Islam & Md. Ahsanul Alam & Molla Shahadat Hossain Lipu & Kamrul Hasan & Sheikh Tanzim Meraj & Hasan Masrur & Md. Fayzur Rahman, 2023. "A Single DC Source Five-Level Switched Capacitor Inverter for Grid-Integrated Solar Photovoltaic System: Modeling and Performance Investigation," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8405-:d:1152782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Bughneda & Mohamed Salem & Anna Richelli & Dahaman Ishak & Salah Alatai, 2021. "Review of Multilevel Inverters for PV Energy System Applications," Energies, MDPI, vol. 14(6), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio A. Garcia-Santiago & Julio C. Rosas-Caro & Jesus E. Valdez-Resendiz & Jonathan C. Mayo-Maldonado & Antonio Valderrabano-Gonzalez & Hector R. Robles-Campos, 2022. "Single-Phase Five-Level Multilevel Inverter Based on a Transistors Six-Pack Module," Energies, MDPI, vol. 15(24), pages 1-21, December.
    2. Muhyaddin Rawa & Prem P & Jagabar Sathik Mohamed Ali & Marif Daula Siddique & Saad Mekhilef & Addy Wahyudie & Mehdi Seyedmahmoudian & Alex Stojcevski, 2021. "A New Multilevel Inverter Topology with Reduced DC Sources," Energies, MDPI, vol. 14(15), pages 1-21, August.
    3. Muhammad Ayyaz Tariq & Umar Tabrez Shami & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "Dragonfly Algorithm-Based Optimization for Selective Harmonics Elimination in Cascaded H-Bridge Multilevel Inverters with Statistical Comparison," Energies, MDPI, vol. 15(18), pages 1-18, September.
    4. Ali Abedaljabar Al-Samawi & Hafedh Trabelsi, 2022. "New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems," Energies, MDPI, vol. 15(16), pages 1-25, August.
    5. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    6. Saud Alotaibi & Xiandong Ma & Ahmed Darwish, 2022. "Dual Isolated Multilevel Modular Inverter with Novel Switching and Voltage Stress Suppression," Energies, MDPI, vol. 15(14), pages 1-18, July.
    7. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    8. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    9. Mohamed Salem & Anna Richelli & Khalid Yahya & Muhammad Najwan Hamidi & Tze-Zhang Ang & Ibrahim Alhamrouni, 2022. "A Comprehensive Review on Multilevel Inverters for Grid-Tied System Applications," Energies, MDPI, vol. 15(17), pages 1-40, August.
    10. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    11. Anna Richelli, 2021. "Current Research on Embedded DC/DC Converters," Energies, MDPI, vol. 14(19), pages 1-2, September.
    12. Ismail Aouichak & Sébastien Jacques & Sébastien Bissey & Cédric Reymond & Téo Besson & Jean-Charles Le Bunetel, 2022. "A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector," Energies, MDPI, vol. 15(3), pages 1-19, February.
    13. Rabail Memon & Mukhtiar Ahmed Mahar & Abdul Sattar Larik & Syed Asif Ali Shah, 2023. "Design and Performance Analysis of New Multilevel Inverter for PV System," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    14. Ahmed Darwish & George A. Aggidis, 2022. "A Review on Power Electronic Topologies and Control for Wave Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    15. Abdul Mannan Rauf & Mohamed Abdel-Monem & Thomas Geury & Omar Hegazy, 2023. "A Review on Multilevel Converters for Efficient Integration of Battery Systems in Stationary Applications," Energies, MDPI, vol. 16(10), pages 1-38, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8405-:d:1152782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.