IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10479-d1185984.html
   My bibliography  Save this article

Optimal Dispatch Strategy for Virtual Power Plants with Adjustable Capacity Assessment of High-Energy-Consuming Industrial Loads Participating in Ancillary Service Markets

Author

Listed:
  • Yining Wang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Guangdi Li

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Bowen Zhou

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Hongyuan Ma

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Ziwen Li

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

Amid the context of a sustainable development strategy, there is a growing interest in renewable energy as an alternative to traditional energy sources. However, as the penetration rate of clean energy gradually increases, its inherent features, such as randomness and uncertainty, have led to a surging demand for flexibility and regulation in power systems, highlighting the need to enhance the flexibility of power systems in multiple dimensions. This paper proposes a method for evaluating the adjustable power capacity of a virtual power plant (VPP), which considers the high-energy-consuming industrial load in the day-ahead to real-time stages and establishes an optimization scheduling model for auxiliary service markets based on this method. Firstly, within the day-ahead phase, the VPP is categorized and modeled based on its level of load flexibility regulation. The assessable capacity is then evaluated to establish the adjustable power range of the VPP, and the capacity of the VPP is subsequently reported. Secondly, the adjustable loads inside the VPP are ranked using the performance indicator evaluation method to obtain the adjustment order of internal resources. Finally, on the real-time scale, an optimization scheduling model to minimize the net operating cost of the VPP is established based on real-time peak-shaving and frequency regulation instructions from the auxiliary service market and solved using the CPLEX solver. The case study results show that the proposed method effectively reduces the net operating cost of the VPP and improves the stability of its participation in the auxiliary service market, which verifies the effectiveness of the proposed method.

Suggested Citation

  • Yining Wang & Guangdi Li & Bowen Zhou & Hongyuan Ma & Ziwen Li, 2023. "Optimal Dispatch Strategy for Virtual Power Plants with Adjustable Capacity Assessment of High-Energy-Consuming Industrial Loads Participating in Ancillary Service Markets," Sustainability, MDPI, vol. 15(13), pages 1-34, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10479-:d:1185984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    2. Cui, Wencong & Li, Jianyi & Xu, Wangtu & Güneralp, Burak, 2021. "Industrial electricity consumption and economic growth: A spatio-temporal analysis across prefecture-level cities in China from 1999 to 2014," Energy, Elsevier, vol. 222(C).
    3. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    4. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Chenghao & Wang, Weiquan & Wang, Junyue & Bai, Yilin & Song, Zhengxiang & Wang, Wei & Meng, Jinhao, 2024. "The role of co-optimization in trading off cost and frequency regulation service for industrial microgrids," Applied Energy, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    2. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    3. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).
    4. Jiang, Bo & Muzhikyan, Aramazd & Farid, Amro M. & Youcef-Toumi, Kamal, 2017. "Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 187(C), pages 833-846.
    5. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    6. Pedro Faria & Zita Vale, 2019. "A Demand Response Approach to Scheduling Constrained Load Shifting," Energies, MDPI, vol. 12(9), pages 1-16, May.
    7. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    8. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Michal Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyla & Jarosław Szymańda & Przemysław Janik, 2020. "A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application," Energies, MDPI, vol. 13(24), pages 1-20, December.
    10. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    11. Jingjing Luo & Yajing Gao & Wenhai Yang & Yongchun Yang & Zheng Zhao & Shiyu Tian, 2018. "Optimal Operation Modes of Virtual Power Plants Based on Typical Scenarios Considering Output Evaluation Criteria," Energies, MDPI, vol. 11(10), pages 1-22, October.
    12. Chen, Yongbao & Zhang, Lixin & Xu, Peng & Di Gangi, Alessandra, 2021. "Electricity demand response schemes in China: Pilot study and future outlook," Energy, Elsevier, vol. 224(C).
    13. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    14. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    15. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    16. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    17. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    18. Chen, Yizhong & He, Li & Li, Jing, 2017. "Stochastic dominant-subordinate-interactive scheduling optimization for interconnected microgrids with considering wind-photovoltaic-based distributed generations under uncertainty," Energy, Elsevier, vol. 130(C), pages 581-598.
    19. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Optimizing Virtual Power Plant Management: A Novel MILP Algorithm to Minimize Levelized Cost of Energy, Technical Losses, and Greenhouse Gas Emissions," Energies, MDPI, vol. 17(16), pages 1-23, August.
    20. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10479-:d:1185984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.