IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10380-d1184309.html
   My bibliography  Save this article

Target Selection for a Space-Energy Driven Laser-Ablation Debris Removal System Based on Ant Colony Optimization

Author

Listed:
  • Wulin Yang

    (School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
    Beijing Institute of Spacecraft Environment Engineering, Beijing 100091, China)

  • Hongya Fu

    (School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Zhongxi Shao

    (School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Qiang Wu

    (Beijing Institute of Spacecraft Environment Engineering, Beijing 100091, China)

  • Chuan Chen

    (Beijing Institute of Spacecraft Environment Engineering, Beijing 100091, China)

Abstract

The space-energy driven laser-ablation debris removal technology can remove or detach multiple centimeter-level space debris in a single mission. However, the space-energy driven platform can only rely on its own equipment capabilities to detect and identify space debris. It is necessary to select multiple potentially removable debris targets to improve the removal efficiency. In this paper, target selection for a space-energy driven laser-ablation debris removal system is analyzed based on ant colony optimization. The intersection and interaction periods were given by the optimal driving sequence calculation for multiple debris. Parameters such as the detection range, pulsed energy, repetition frequency of the laser and trajectory of debris have been considered as inputs of the simulation. Target selection and optimal action time have been calculated when a single debris entered the detection range of the laser system. This optimization can significantly improve the overall efficiency and laser energy utilization of the space-based laser platform for the same randomly generated debris group, compared to the mode driven sequentially according to the order of entering the laser action range. The results showed that after being filtered by the ant colony algorithm, the number of removable debris doubled, and the de-orbit altitude increased by 15.9%. The energy utilization rate of the laser removal system has been improved by 74.6%. This optimization algorithm can significantly improve the overall work efficiency and laser energy utilization rate of the space-energy driven system. It can remove more debris or have a larger effective orbit reduction distance value for all debris.

Suggested Citation

  • Wulin Yang & Hongya Fu & Zhongxi Shao & Qiang Wu & Chuan Chen, 2023. "Target Selection for a Space-Energy Driven Laser-Ablation Debris Removal System Based on Ant Colony Optimization," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10380-:d:1184309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong Miao & Lingcong Zhang & Sixing Liu & Shanwen Zhang & Saim Memon & Bi Zhu, 2020. "Laser Sealing for Vacuum Plate Glass with PbO-TiO 2 -SiO 2 -RxOy Solder," Sustainability, MDPI, vol. 12(8), pages 1-9, April.
    2. Diego Alejandro Herrera-Jaramillo & Elkin Edilberto Henao-Bravo & Daniel González Montoya & Carlos Andrés Ramos-Paja & Andrés Julián Saavedra-Montes, 2021. "Control-Oriented Model of Photovoltaic Systems Based on a Dual Active Bridge Converter," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    3. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Muhammad Faisal Fiaz & Sandro Calligaro & Mattia Iurich & Roberto Petrella, 2022. "Analytical Modeling and Control of Dual Active Bridge Converter Considering All Phase-Shifts," Energies, MDPI, vol. 15(8), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10380-:d:1184309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.