IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10284-d1182478.html
   My bibliography  Save this article

Life-Cycle Assessment of Municipal Solid Waste Incineration Fly Ash Recycling as a Feedstock for Brick Manufacturing

Author

Listed:
  • Tseng-Hsian Lin

    (Department of Water Resources and Environmental Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan)

  • Hung-Jung Siao

    (Department of Water Resources and Environmental Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan)

  • Sue-Huai Gau

    (Department of Water Resources and Environmental Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan)

  • Jen-Hwa Kuo

    (Department of Industrial Engineering and Management, National Taipei University of Technology, No. 1, Section 3, Zhongxiao Eest Road, Taipei City 106344, Taiwan
    Current address: Institute of Brain Sciences, National Yang Ming Chiao Tung University, No. 155, Section 2, Linong Street, Taipei City 112304, Taiwan.)

  • Ming-Guo Li

    (Department of Water Resources and Environmental Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan)

  • Chang-Jung Sun

    (School of Urban Construction and Environment, Dongguan City University, 1 Wenchang Road, Dongguan 523419, China)

Abstract

The recovery of municipal solid waste incineration (MSWI) fly ash is currently considered to be the most viable solution for its management. However, in developing resource recovery technologies, it is crucial to consider the overall environmental impact. This study employed a life-cycle assessment (LCA) to compare environmentally friendly red bricks partially utilizing MSWI fly ash as a raw material with conventional red bricks. The results demonstrate that the use of phosphoric acid during the resource recovery process imposes the most significant environmental burden, followed by electricity consumption. To address this issue, in this study, we simulated the replacement of phosphoric acid with phosphoric acid monohydrate recovered from discarded fire extinguishers, resulting in the production of second-generation environmentally friendly red bricks. The analysis revealed that the environmentally friendly red bricks exhibited a mere 5.52% increase in total environmental impact compared with traditional red bricks. Moreover, by stabilizing heavy metals using recovered phosphoric acid monohydrate, the second-generation environmentally friendly red bricks achieved an 8.75% reduction in total environmental impact relative to traditional red bricks. These findings highlight the environmental benefits of fly ash reuse in red brick production, and the incorporation of other industrial waste or byproducts could further enhance its efficacy. The application of the LCA facilitated the identification of key areas for improvement and enabled precise evaluation of the environmental benefits associated with waste reuse.

Suggested Citation

  • Tseng-Hsian Lin & Hung-Jung Siao & Sue-Huai Gau & Jen-Hwa Kuo & Ming-Guo Li & Chang-Jung Sun, 2023. "Life-Cycle Assessment of Municipal Solid Waste Incineration Fly Ash Recycling as a Feedstock for Brick Manufacturing," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10284-:d:1182478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    2. Jingxuan Zhang & Sarah Fernando & David W. Law & Chamila Gunasekara & Sujeeva Setunge & Malindu Sandanayake & Guomin Zhang, 2023. "Life Cycle Assessment for Geopolymer Concrete Bricks Using Brown Coal Fly Ash," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    2. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    3. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    4. Al-Sulaiman, Fahad A. & Dincer, Ibrahim & Hamdullahpur, Feridun, 2012. "Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle," Energy, Elsevier, vol. 45(1), pages 975-985.
    5. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
    6. Monica Carvalho & Dean L. Millar, 2012. "Concept Development of Optimal Mine Site Energy Supply," Energies, MDPI, vol. 5(11), pages 1-20, November.
    7. da Silva, Julio Augusto Mendes & Santos, José Joaquim Conceição Soares & Carvalho, Monica & de Oliveira, Silvio, 2017. "On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems," Energy, Elsevier, vol. 127(C), pages 775-785.
    8. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    9. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    10. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    11. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
    12. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    13. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    14. Klebson de Medeiros Silva, Wallysson & Neves, Talles Iwasawa & de Souza Silva, Cleiton & Carvalho, Monica & Abrahão, Raphael, 2020. "Sustainable enhancement of sugarcane fertilization for energy purposes in hot climates," Renewable Energy, Elsevier, vol. 159(C), pages 547-552.
    15. Martinopoulos, G. & Tsilingiridis, G. & Kyriakis, N., 2013. "Identification of the environmental impact from the use of different materials in domestic solar hot water systems," Applied Energy, Elsevier, vol. 102(C), pages 545-555.
    16. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    17. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    18. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    19. Eduardo J. C. Cavalcanti & João Victor M. Ferreira & Monica Carvalho, 2021. "Research on a Solar Hybrid Trigeneration System Based on Exergy and Exergoenvironmental Assessments," Energies, MDPI, vol. 14(22), pages 1-19, November.
    20. Sy, Charlle L. & Aviso, Kathleen B. & Ubando, Aristotle T. & Tan, Raymond R., 2016. "Target-oriented robust optimization of polygeneration systems under uncertainty," Energy, Elsevier, vol. 116(P2), pages 1334-1347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10284-:d:1182478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.