IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9608-d1171618.html
   My bibliography  Save this article

Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio

Author

Listed:
  • Jun-Xi Deng

    (College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China)

  • Xiao Li

    (College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China)

  • Xiao-Juan Li

    (College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China)

  • Tai-Bing Wei

    (Department of Civil Engineering and Architecture, Wuyi University, Wuyishan 354300, China)

Abstract

Construction solid waste and agricultural waste, as renewable resources, have gained increasing attention recently. This research aims to explore the mechanical and thermal properties of recycled-straw insulating concrete commonly made with construction waste and straw in northern Fujian, which can provide useful suggestions for the practical use of recycled-straw insulating concrete. The effects of recycled coarse aggregate, fly ash, and straw on the mechanical and thermal properties of recycled-straw insulating concrete were investigated by orthogonal tests. The results of the orthogonal tests were optimized by the total efficacy coefficient method to obtain the optimal mix ratio of recycled-straw insulating concrete. Combined with the finite element analysis software ANSYS Workbench, the heat transfer performance of the recycled-straw insulating concrete walls was analyzed to simulate the insulation performance of the walls. The compressive strength of the recycled-straw insulating concrete with the optimal ratio was found to be 30.93 MPa, and the thermal conductivity was 0.5051 W/(m·K). The steady-state thermal analysis of the recycled-straw insulating concrete wall and the plain concrete wall was carried out by finite element software, and the simulation results showed that the insulation performance of the recycled-straw insulating concrete walls was improved by 145% compared with the plain concrete wall. These results indicate that the recycled-straw insulating concrete wall has better thermal insulation performance and can be applied to building envelopes to save heating costs in winter and reduce carbon dioxide emissions, which has significant economic and environmental significance for areas with low outdoor temperatures in winter and long heating periods.

Suggested Citation

  • Jun-Xi Deng & Xiao Li & Xiao-Juan Li & Tai-Bing Wei, 2023. "Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9608-:d:1171618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sérgio Roberto Da Silva & Jairo José de Oliveira Andrade, 2022. "A Review on the Effect of Mechanical Properties and Durability of Concrete with Construction and Demolition Waste (CDW) and Fly Ash in the Production of New Cement Concrete," Sustainability, MDPI, vol. 14(11), pages 1-27, May.
    2. Jesús M. Blanco & Yokasta García Frómeta & Maggi Madrid & Jesús Cuadrado, 2021. "Thermal Performance Assessment of Walls Made of Three Types of Sustainable Concrete Blocks by Means of FEM and Validated through an Extensive Measurement Campaign," Sustainability, MDPI, vol. 13(1), pages 1-18, January.
    3. Jan Pešta & Tereza Pavlů & Kristina Fořtová & Vladimír Kočí, 2020. "Sustainable Masonry Made from Recycled Aggregates: LCA Case Study," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Feraidon Ataie, 2018. "Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    5. Taha Ashour & Mohamad Morsy & Azra Korjenic & Henriette Fischer & Mervat Khalil & Eldira Sesto & Mohammed Orabi & Ibrahim Yehia, 2021. "Engineering Parameters of Rice Straw Concrete with Granulated Blast Furnace Slag," Energies, MDPI, vol. 14(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah C. Andersen & Harpa Birgisdottir & Morten Birkved, 2022. "Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review," Sustainability, MDPI, vol. 14(11), pages 1-31, June.
    2. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    3. Rongfei Zhao & Jia Fu & Binbin Feng & Wei Gao, 2024. "Optimization Research of Sodium Hydroxide Pretreatment to Enhance the Thermal Properties of Straw–Mortar Composite Materials," Sustainability, MDPI, vol. 16(12), pages 1-18, June.
    4. Jan Pešta & Markéta Šerešová & Vladimír Kočí, 2020. "Carbon Footprint Assessment of Construction Waste Packaging Using the Package-to-Product Indicator," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    5. Roberto Cerchione & Francesco Colangelo & Ilenia Farina & Patrizia Ghisellini & Renato Passaro & Sergio Ulgiati, 2023. "Life Cycle Assessment of Concrete Production within a Circular Economy Perspective," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    6. Yuqi Wu & Yunqiang Wu & Yue Wu, 2023. "Research on a New Plant Fiber Concrete-Light Steel Keel Wall Panel," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    7. Jesús M. Blanco & Yokasta García Frómeta & Maggi Madrid & Jesús Cuadrado, 2021. "Thermal Performance Assessment of Walls Made of Three Types of Sustainable Concrete Blocks by Means of FEM and Validated through an Extensive Measurement Campaign," Sustainability, MDPI, vol. 13(1), pages 1-18, January.
    8. Jaksada Thumrongvut & Sittichai Seangatith & Chayakrit Phetchuay & Cherdsak Suksiripattanapong, 2022. "Comparative Experimental Study of Sustainable Reinforced Portland Cement Concrete and Geopolymer Concrete Beams Using Rice Husk Ash," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    9. Chang-Seon Shon & Temirlan Mukashev & Deuckhang Lee & Dichuan Zhang & Jong R. Kim, 2019. "Can Common Reed Fiber Become an Effective Construction Material? Physical, Mechanical, and Thermal Properties of Mortar Mixture Containing Common Reed Fiber," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    10. Kallis, George & Roumpedakis, Tryfon C. & Pallis, Platon & Koutantzi, Zoi & Charalampidis, Antonios & Karellas, Sotirios, 2022. "Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle," Energy, Elsevier, vol. 257(C).
    11. Alessio Miatto & Claudia Sartori & Martina Bianchi & Paolo Borin & Andrea Giordano & Shoshanna Saxe & T.E. Graedel, 2022. "Tracking the material cycle of Italian bricks with the aid of building information modeling," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 609-626, April.
    12. Fernando Antonio da Silva Fernandes & Dayriane do Socorro de Oliveira Costa & Camilo Andrés Guerrero Martin & João Adriano Rossignolo, 2023. "Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
    13. Yudi Wang & Guoqiang Xu, 2022. "Numerical Simulation of Thermal Storage Performance of Different Concrete Floors," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    14. Shiqing Yang & Mingjie Gu & Hongyi Lin & Yue Gong, 2023. "Property Improvement of Recycled Coarse Aggregate by Accelerated Carbonation Treatment under Different Curing Conditions," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9608-:d:1171618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.