IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p9102-d1164118.html
   My bibliography  Save this article

An Accelerated-Based Evaluation Method for Corrosion Lifetime of Materials Considering High-Temperature Oxidation Corrosion

Author

Listed:
  • Hongbin Zhang

    (School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
    China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China)

  • Shuqiang Liu

    (China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China)

  • Peibo Liang

    (China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China
    Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology, Guangzhou 511370, China)

  • Zhipeng Ye

    (China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China
    Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology, Guangzhou 511370, China)

  • Yaqiu Li

    (China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China
    Key Laboratory of Active Medical Devices Quality & Reliability Management and Assessment, Guangzhou 511370, China)

Abstract

In the realm of industrial automation, corrosion represents one of the primary modes of failure, especially in the case of armored thermocouples exposed to temperatures ranging between 1073.15–1373.15 K. In this context, the selection of metal materials that can withstand high-temperature oxidation and corrosion is of paramount importance. Typically, the corrosion resistance of a given metal material is assessed by measuring the “annual corrosion rate” or “corrosion depth”, which can provide an estimated life expectancy value. However, such an approach fails to account for the individual characteristics of the material, and thus does not conform to objective laws. Rather, the corrosion life of a batch of metallic materials should follow the Weibull distribution, or possibly a normal distribution, as per recent studies that have examined the high-temperature oxidation corrosion mechanism of machine or core components. This investigation effectively combines the standard approach for evaluating metal corrosion resistance in the field of materials with the method of assessing component life in the domain of reliability. Furthermore, we consider the individual differences among materials and provide the life distribution function of metals in corrosive environments and thereby refine the evaluation of metal corrosion resistance. This study ultimately establishes a thermocouple accelerated life evaluation model that enhances the accuracy and efficiency of life evaluations for related products.

Suggested Citation

  • Hongbin Zhang & Shuqiang Liu & Peibo Liang & Zhipeng Ye & Yaqiu Li, 2023. "An Accelerated-Based Evaluation Method for Corrosion Lifetime of Materials Considering High-Temperature Oxidation Corrosion," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9102-:d:1164118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/9102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/9102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Xia & Tian, Yubin & Ning, Wei, 2019. "Change-point analysis of the failure mechanisms based on accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 515-522.
    2. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Mei Li & Wei Ning & Yubin Tian, 2024. "Change Point Test for Length-Biased Lognormal Distribution under Random Right Censoring," Mathematics, MDPI, vol. 12(11), pages 1-20, June.
    3. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Han, David & Bai, Tianyu, 2020. "Design optimization of a simple step-stress accelerated life test – Contrast between continuous and interval inspections with non-uniform step durations," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    9. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    11. Saberzadeh, Zahra & Razmkhah, Mostafa & Amini, Mohammad, 2023. "Bayesian reliability analysis of complex k-out-of-n: â„“ systems under degradation performance," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Subramanian, Abhinav & Mahadevan, Sankaran, 2022. "Importance sampling for probabilistic prognosis of sector-wide flight separation safety," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Xu, Dong & Tian, Yubin & Shi, Junbiao & Wang, Dianpeng & Zhang, Ming & Li, Haijin, 2023. "Reliability analysis and optimal redundancy for a satellite power supply system based on a new dynamic k-out-of-n: G model," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    14. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    16. Bin Suo & Yang Qi & Kai Sun & Jingyuan Xu, 2023. "A Novel Model Validation Method Based on Area Metric Disagreement between Accelerated Storage Distributions and Natural Storage Data," Mathematics, MDPI, vol. 11(11), pages 1-18, May.
    17. Sun, Xuxue & Cai, Wenjun & Li, Mingyang, 2021. "A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Barui, Sandip & Mitra, Debanjan & Balakrishnan, Narayanaswamy, 2024. "Flexible modelling of a bivariate degradation process with a shared frailty and an application to fatigue crack data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Zheng, Huiling & Kong, Xuefeng & Xu, Houbao & Yang, Jun, 2021. "Reliability analysis of products based on proportional hazard model with degradation trend and environmental factor," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9102-:d:1164118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.