IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8539-d1154939.html
   My bibliography  Save this article

A Computational Model for Determining Tiger Dispersal and Related Patterns in a Landscape Complex

Author

Listed:
  • Saurabh Shanu

    (School of Computer Science and Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India)

  • Alok Agarwal

    (School of Computer Science and Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India)

Abstract

Species dispersal from one territorial zone to another is a complex process. The reasons for species dispersal are determined by both natural and human factors. The purpose of this study is to develop a cost surface for a hypothetical landscape that accounts for various species dispersion features. With tigers ( Panthera tigris tigris ) as the focal species, a computational model for a landscape has been proposed to predict the dispersion patterns of the species’ individuals from one habitat patch to another. Knowing how tigers disperse is very crucial because it improves the likelihood of successful conservation. The likelihood is raised because it strengthens conservation efforts in the targeted regions identified by the proposed model and encourages landscape continuity for tiger dispersal. Initially, four major factors influencing tiger dispersal are explored. Following that, grids are overlaid over the tiger-carrying landscape map. Further, game theory assigns a score to each grid in the landscape matrix based on the landscape features in the focal landscape. Specific predefined ratings are also utilized for scenarios that are very complex and may change depending on variables, such as the interaction of the dispersing tiger with co-predators. The two scores mentioned above are combined to create a cost matrix that is shown across a landscape complex to estimate the impact of each landscape component on tiger dispersal. This approach helps wildlife managers develop conservation plans by recognizing important characteristics in the landscape. The results of the model described in this work might be beneficial for a wide range of wildlife management activities, such as corridor management, smart patrols, and so on. A cost surface over any focal landscape may serve as a basis for policy and purpose design based on current landscape conditions.

Suggested Citation

  • Saurabh Shanu & Alok Agarwal, 2023. "A Computational Model for Determining Tiger Dispersal and Related Patterns in a Landscape Complex," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8539-:d:1154939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holloway, Paul & Miller, Jennifer A., 2017. "A quantitative synthesis of the movement concepts used within species distribution modelling," Ecological Modelling, Elsevier, vol. 356(C), pages 91-103.
    2. Myeonghwan Cho, 2014. "Cooperation in the repeated prisoner's dilemma game with local interaction and local communication," International Journal of Economic Theory, The International Society for Economic Theory, vol. 10(3), pages 235-262, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Früh, Linus & Kampen, Helge & Kerkow, Antje & Schaub, Günter A. & Walther, Doreen & Wieland, Ralf, 2018. "Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations," Ecological Modelling, Elsevier, vol. 388(C), pages 136-144.
    2. Singer, Alexander & Schweiger, Oliver & Kühn, Ingolf & Johst, Karin, 2018. "Constructing a hybrid species distribution model from standard large-scale distribution data," Ecological Modelling, Elsevier, vol. 373(C), pages 39-52.
    3. Loehle, Craig, 2018. "Disequilibrium and relaxation times for species responses to climate change," Ecological Modelling, Elsevier, vol. 384(C), pages 23-29.
    4. Barber-O'Malley, Betsy & Lassalle, Géraldine & Chust, Guillem & Diaz, Estibaliz & O'Malley, Andrew & Paradinas Blázquez, César & Pórtoles Marquina, Javier & Lambert, Patrick, 2022. "HyDiaD: A hybrid species distribution model combining dispersal, multi-habitat suitability, and population dynamics for diadromous species under climate change scenarios," Ecological Modelling, Elsevier, vol. 470(C).
    5. Wyka Sylwester, 2019. "The Possibility of Overcoming Barriers in International Cooperation in the Area of R&D from the Point of View of a Research Unit, Based on the Example of the Institute of Aviation," Marketing of Scientific and Research Organizations, Sciendo, vol. 31(1), pages 173-188, March.
    6. , & ,, 2014. "Efficiency in repeated games with local interaction and uncertain local monitoring," Theoretical Economics, Econometric Society, vol. 9(1), January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8539-:d:1154939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.