IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2015-92-3.html
   My bibliography  Save this article

An Agent-Based Model of Flood Risk and Insurance

Author

Abstract

Flood risk emerges from the dynamic interaction between natural hazards and human vulnerability. Methods for the quantification of flood risk are well established, but tend to deal with human and economic vulnerability as being static or changing with an exogenously defined trend. In this paper we present an Agent-Based Model (ABM) developed to simulate the dynamical evolution of flood risk and vulnerability, and facilitate an investigation of insurance mechanism in London. The ABM has been developed to firstly allow an analysis of the vulnerability of homeowners to surface water flooding, which is one of the greatest short-term climate risks in the UK with estimated annual costs of £1.3bn to £2.2bn. These costs have been estimated to increase by 60-220% over the next 50 years due to climate change and urbanisation. Vulnerability is influenced by homeowner’s decisions to move house and/or install measures to protect their properties from flooding. In particular, the ABM focuses on the role of flood insurance, simulating the current public-private partnership between the government and insurers in the UK, and the forthcoming re-insurance scheme Flood Re, designed as a roadmap to support the future affordability and availability of flood insurance. The ABM includes interaction between homeowners, sellers and buyers, an insurer, a local government and a developer. Detailed GIS and qualitative data of the London borough of Camden are used to represent an area at high risk of surface water flooding. The ABM highlights how future development can exacerbate current levels of surface water flood risk in Camden. Investment in flood protection measures are shown to be beneficial for reducing surface water flood risk. The Flood Re scheme is shown to achieve its aim of securing affordable flood insurance premiums, however, is placed under increasing pressure in the future as the risk of surface water flooding continues to increase.

Suggested Citation

  • Jan Dubbelboer & Igor Nikolic & Katie Jenkins & Jim Hall, 2017. "An Agent-Based Model of Flood Risk and Insurance," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-6.
  • Handle: RePEc:jas:jasssj:2015-92-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/20/1/6/6.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torsten Heinrich & Juan Sabuco & J. Doyne Farmer, 2022. "A simulation of the insurance industry: the problem of risk model homogeneity," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 535-576, April.
    2. Yu Han & Kevin Ash & Liang Mao & Zhong-Ren Peng, 2020. "An agent-based model for community flood adaptation under uncertain sea-level rise," Climatic Change, Springer, vol. 162(4), pages 2257-2276, October.
    3. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    4. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    5. Ghiwa Assaf & Rayan H. Assaad, 2023. "Optimal Preventive Maintenance, Repair, and Replacement Program for Catch Basins to Reduce Urban Flooding: Integrating Agent-Based Modeling and Monte Carlo Simulation," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    6. Sedar Olmez & Akhil Ahmed & Keith Kam & Zhe Feng & Alan Tua, 2023. "Exploring the Dynamics of the Specialty Insurance Market Using a Novel Discrete Event Simulation Framework: a Lloyd's of London Case Study," Papers 2307.05581, arXiv.org.
    7. Katrin Erdlenbruch & Bruno Bonté, 2018. "Simulating the dynamics of individual adaptation to floods," Post-Print hal-02175815, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2015-92-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.