IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p338-d1015054.html
   My bibliography  Save this article

Forage Potential of Cereal–Legume Mixtures as an Adaptive Climate Change Strategy under Low Input Systems

Author

Listed:
  • Rajia Kchaou

    (National Research Institute for Rural Engineering, Water and Forestry, Tunis 2080, Tunisia)

  • Salah Benyoussef

    (National Institute of Agronomic Research of Tunisia, Tunis 1004, Tunisia)

  • Sihem Jebari

    (National Research Institute for Rural Engineering, Water and Forestry, Tunis 2080, Tunisia)

  • Kalthoum Harbaoui

    (Higher School of Agriculture, Mateur 7030, Tunisia)

  • Ronny Berndtsson

    (Centre for Advanced Middle Eastern Studies & Division of Water Resources Engineering, Lund University, SE-22100 Lund, Sweden)

Abstract

Mixed cropping systems can constitute important agroecological adaptation strategies for enhancing crop growth and productivity in view of climate change, while reducing the need for synthetic fertilizers and providing important ecosystem services. The aim of this study was to investigate growth, competitiveness, and productivity of two forage mixtures combining triticale ( X triticosecale Wittmack ) to common vetch ( Vicia sativa L.), and to fenugreek ( Trigonella fœnum-græcum L.) in different mixture combinations (40% T–60% V vs. 60% T–40% V and 40% T–60% F vs. 60% T–40% F). Field results showed that both forage legumes were higher inside the different crop mixtures (+225% for vetch, +94% for fenugreek) than in monocropping. In regard to the competition ration (CR), triticale was the more dominant and competitive species in three out of four studied mixtures. Forage yield was higher in crop mixtures than for corresponding sole crops. Yield gain was greater for common vetch-based mixtures than fenugreek ones (+60% vs. +30%). The results show that using cereal–legume mixtures can provide important productivity increase for fodder yield compared to conventional pure crops. The method is an important adaptive agricultural strategy in view of climate change.

Suggested Citation

  • Rajia Kchaou & Salah Benyoussef & Sihem Jebari & Kalthoum Harbaoui & Ronny Berndtsson, 2022. "Forage Potential of Cereal–Legume Mixtures as an Adaptive Climate Change Strategy under Low Input Systems," Sustainability, MDPI, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:338-:d:1015054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. Ann Bybee-Finley & Matthew R. Ryan, 2018. "Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes," Agriculture, MDPI, vol. 8(6), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clément, Rigal & Tuan, Duong & Cuong, Vo & Le Van, Bon & Trung, Hoang quôc & Long, Chau Thi Minh, 2023. "Transitioning from Monoculture to Mixed Cropping Systems: The Case of Coffee, Pepper, and Fruit Trees in Vietnam," Ecological Economics, Elsevier, vol. 214(C).
    2. Mugula, Joseph J & Ahmad, Athman Kyaruzi & Msinde, John & Kadigi, Michael, 2023. "Determinants of Adoption of Bundled Sustainable Agriculture Practices among Small-Scale Maize Farmers in Mvomero and Kilosa Districts, Tanzania," African Journal of Economic Review, African Journal of Economic Review, vol. 11(4), September.
    3. Ilaria Marotti & Anne Whittaker & Reyhan Bahtiyarca Bağdat & Pervin Ari Akin & Namuk Ergün & Giovanni Dinelli, 2023. "Intercropping Perennial Fruit Trees and Annual Field Crops with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    4. Sabine Andert, 2021. "The Method and Timing of Weed Control Affect the Productivity of Intercropped Maize ( Zea mays L.) and Bean ( Phaseolus vulgaris L.)," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
    5. Fateh Mamine & M’hand Farès, 2020. "Barriers and Levers to Developing Wheat–Pea Intercropping in Europe: A Review," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    6. Schomberg, Harry H. & White, Kathryn E. & Thompson, Alondra I. & Bagley, Gwendolyn A. & Burke, Allen & Garst, Grace & Bybee-Finley, K. Ann & Mirsky, Steven B., 2023. "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Moritz von Cossel & Yasir Iqbal & Iris Lewandowski, 2019. "Improving the Ecological Performance of Miscanthus ( Miscanthus × giganteus Greef et Deuter) through Intercropping with Woad ( Isatis tinctoria L.) and Yellow Melilot ( Melilotus officinalis L.)," Agriculture, MDPI, vol. 9(9), pages 1-12, September.
    8. Viktorija Gecaitė & Aušra Arlauskienė & Jurgita Cesevičienė, 2021. "Competition Effects and Productivity in Oat–Forage Legume Relay Intercropping Systems under Organic Farming Conditions," Agriculture, MDPI, vol. 11(2), pages 1-15, January.
    9. Eugene P. Law & Sandra Wayman & Christopher J. Pelzer & Steven W. Culman & Miguel I. Gómez & Antonio DiTommaso & Matthew R. Ryan, 2022. "Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    10. Denise M. Finney & Samantha Garritano & Matthew Kenwood, 2021. "Forage Species Identity Shapes Soil Biota in a Temperate Agroecosystem," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    11. Danilo Scordia & Salvatore Luciano Cosentino, 2019. "Perennial Energy Grasses: Resilient Crops in a Changing European Agriculture," Agriculture, MDPI, vol. 9(8), pages 1-19, August.
    12. Uttam Khanal & Kerry J. Stott & Roger Armstrong & James G. Nuttall & Frank Henry & Brendan P. Christy & Meredith Mitchell & Penny A. Riffkin & Ashley J. Wallace & Malcolm McCaskill & Thabo Thayalakuma, 2021. "Intercropping—Evaluating the Advantages to Broadacre Systems," Agriculture, MDPI, vol. 11(5), pages 1-20, May.
    13. Johannes Timaeus & Ties Ruigrok & Torsten Siegmeier & Maria Renate Finckh, 2022. "Adoption of Food Species Mixtures from Farmers’ Perspectives in Germany: Managing Complexity and Harnessing Advantages," Agriculture, MDPI, vol. 12(5), pages 1-22, May.
    14. Fatch, Paul & Masangano, Charles & Hilger, Thomas & Jordan, Irmgard & Mambo, Isaac & Kamoto, Judith Francesca Mangani & Kalimbira, Alexander & Nuppenau, Ernst-August, 2021. "Holistic agricultural diversity index as a measure of agricultural diversity: A cross-sectional study of smallholder farmers in Lilongwe district of Malawi," Agricultural Systems, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:338-:d:1015054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.