IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p25-d1008924.html
   My bibliography  Save this article

Modeling of Fuzzy Cognitive Maps with a Metaheuristics-Based Rainfall Prediction System

Author

Listed:
  • Mesfer Al Duhayyim

    (Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia)

  • Heba G. Mohamed

    (Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Jaber S. Alzahrani

    (Department of Industrial Engineering, College of Engineering at Alqunfudah, Umm Al-Qura University, Mecca 24382, Saudi Arabia)

  • Rana Alabdan

    (Department of Information Systems, College of Computer and Information Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Mohamed Mousa

    (Department of Electrical Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11845, Egypt)

  • Abu Sarwar Zamani

    (Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia)

  • Ishfaq Yaseen

    (Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia)

  • Mohamed Ibrahim Alsaid

    (Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia)

Abstract

Rainfall prediction remains a hot research topic in smart city environments. Precise rainfall prediction in smart cities becomes essential for planning security measures before construction and transportation activities, flight operations, water reservoir systems, and agricultural tasks. Precise rainfall forecasting now becomes more complex than before because of extreme climatic changes. Machine learning (ML) approaches can forecast rainfall by deriving hidden patterns from historic meteorological datasets. Selecting a suitable classification method for forecasting has become a tough job. This article introduces the Fuzzy Cognitive Maps with a Metaheuristics-based Rainfall Prediction System (FCMM-RPS) technique. The intention of the FCMM-RPS technique is to predict rainfall automatically and efficiently. To accomplish this, the presented FCMM-RPS technique primarily pre-processes the rainfall data to make it compatible. In addition, the presented FCMM-RPS technique predicts rainfall using the FCM model. To enhance the rainfall prediction outcomes of the FCM model, the parameter optimization process is performed using a modified butterfly optimization algorithm (MBOA). The performance assessment of the FCMM-RPS technique is tested on a rainfall dataset. A widespread comparison study highlights the improvements of the FCMM-RPS technique in the rainfall forecasting process compared to existing techniques with a maximum accuracy of 94.22%.

Suggested Citation

  • Mesfer Al Duhayyim & Heba G. Mohamed & Jaber S. Alzahrani & Rana Alabdan & Mohamed Mousa & Abu Sarwar Zamani & Ishfaq Yaseen & Mohamed Ibrahim Alsaid, 2022. "Modeling of Fuzzy Cognitive Maps with a Metaheuristics-Based Rainfall Prediction System," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:25-:d:1008924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2018. "Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps," Energies, MDPI, vol. 11(3), pages 1-41, February.
    2. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    3. Papul Changmai & Sunil Deka & Shashank Kumar & Thanikanti Sudhakar Babu & Belqasem Aljafari & Benedetto Nastasi, 2022. "A Critical Review on the Estimation Techniques of the Solar PV Cell’s Unknown Parameters," Energies, MDPI, vol. 15(19), pages 1-20, September.
    4. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    5. Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
    6. Tayyaba Nosheen & Ahsan Ali & Muhammad Umar Chaudhry & Dmitry Nazarenko & Inam ul Hasan Shaikh & Vadim Bolshev & Muhammad Munwar Iqbal & Sohail Khalid & Vladimir Panchenko, 2023. "A Fractional Order Controller for Sensorless Speed Control of an Induction Motor," Energies, MDPI, vol. 16(4), pages 1-15, February.
    7. Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.
    8. Jiapeng Yan & Huifang Kong & Zhihong Man, 2022. "Recurrent Neural Network-Based Nonlinear Optimization for Braking Control of Electric Vehicles," Energies, MDPI, vol. 15(24), pages 1-17, December.
    9. El-Dabah, Mahmoud A. & El-Sehiemy, Ragab A. & Hasanien, Hany M. & Saad, Bahaa, 2023. "Photovoltaic model parameters identification using Northern Goshawk Optimization algorithm," Energy, Elsevier, vol. 262(PB).
    10. Moudgil, Vipul & Hewage, Kasun & Hussain, Syed Asad & Sadiq, Rehan, 2023. "Integration of IoT in building energy infrastructure: A critical review on challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    11. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    13. Amal Azzi & Mohamed Tabaa & Badr Chegari & Hanaa Hachimi, 2024. "Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort," Sustainability, MDPI, vol. 16(5), pages 1-36, March.
    14. Houssem Ben Aribia & Ali M. El-Rifaie & Mohamed A. Tolba & Abdullah Shaheen & Ghareeb Moustafa & Fahmi Elsayed & Mostafa Elshahed, 2023. "Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    15. Martin Ćalasan & Mujahed Al-Dhaifallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Comparative Analysis of Different Iterative Methods for Solving Current–Voltage Characteristics of Double and Triple Diode Models of Solar Cells," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    16. Polash Banerjee, 2022. "MODIS-FIRMS and ground-truthing-based wildfire likelihood mapping of Sikkim Himalaya using machine learning algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 899-935, January.
    17. Ahmad Esmaeilzadeh & Brian Deal & Aghil Yousefi-Koma & Mohammad Reza Zakerzadeh, 2022. "How Multi-Criterion Optimized Control Methods Improve Effectiveness of Multi-Zone Building Heating System Upgrading," Energies, MDPI, vol. 15(22), pages 1-27, November.
    18. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    20. Hamed Etezadi & Sulaymon Eshkabilov, 2024. "A Comprehensive Overview of Control Algorithms, Sensors, Actuators, and Communication Tools of Autonomous All-Terrain Vehicles in Agriculture," Agriculture, MDPI, vol. 14(2), pages 1-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:25-:d:1008924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.