IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5277-d803565.html
   My bibliography  Save this article

The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany

Author

Listed:
  • Veronika Fendel

    (Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

  • Claudia Maurer

    (Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

  • Martin Kranert

    (Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

  • Jingjing Huang

    (Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

  • Benjamin Schäffner

    (Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

Abstract

The aim of this study is to evaluate the potential for conserving natural resources (fossil resources, mineral fertilizer, fertile soil and biodiversity) with alternative circular concepts in order to contribute to the achievement of global sustainability goals. This study examines the potential contribution of substituting conventional products for three alternative circular economy concepts. This includes the household resources black water, kitchen and green waste for the production of design fertilizer, plant charcoal, biopolymers (concept 1) and biogas (concept 2), as well as the combination of household kitchen waste with wild plants for the production of biogas (concept 3). For evaluation, literature values were combined with analyzed parameters of input streams and biogas tests. The production and consumption values determined all relate to the functional unit of a person and year in Germany. Concept 1 has the highest potential for substitution in terms of the amount of recycled products. Co-recycling of organic household waste can account for 20% of NPK (nitrogen, phosphorus, potassium) mineral fertilizer, 19% of plastic consumption and 11% as a soil improving measure in soils in agriculture that are at risk of degradation. Concept 2 has the potential to contribute 12% of the final energy consumption in private households, which is an alternative solution regarding energy recovery due to the extensive practical experience. The joint recycling generates 141 kWh without, and 174 kWh with, fermentable green waste. If 75%, by weight, of fresh wild plants are added to the kitchen waste in concept 3, a wild plant area of 5 m 2 is required, which could replace 41% of the biogas corn area, which is concept 3. This mix generates 193 kWh with the potential to reach 78% of corn energy production. The share of wild plants in kitchen waste of 50 or 25% by weight has the potential to achieve 115 or 104% of the corn energy yield, which is a promising concept for rural areas regarding energy recovery from an ecological point of view. The results show a considerable contribution potential of household resources in alternative cycle concepts to increase resource efficiency, and indirectly to diversify the agricultural landscape.

Suggested Citation

  • Veronika Fendel & Claudia Maurer & Martin Kranert & Jingjing Huang & Benjamin Schäffner, 2022. "The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5277-:d:803565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tasnim, Farzana & Iqbal, Salma A. & Chowdhury, Aminur Rashid, 2017. "Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth," Renewable Energy, Elsevier, vol. 109(C), pages 434-439.
    2. Patrick Schroeder & Kartika Anggraeni & Uwe Weber, 2019. "The Relevance of Circular Economy Practices to the Sustainable Development Goals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 77-95, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    2. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    3. German Arana‐Landin & Waleska Sigüenza & Beñat Landeta‐Manzano & Iker Laskurain‐Iturbe, 2024. "Circular economy: On the road to ISO 59000 family of standards," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 1977-2009, May.
    4. Bruno Michel Roman Pais Seles & Janaina Mascarenhas & Ana Beatriz Lopes de Sousa Jabbour & Adriana Hoffman Trevisan, 2022. "Smoothing the circular economy transition: The role of resources and capabilities enablers," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1814-1837, May.
    5. Wei, Aiping & Zakari, Abdulrasheed & Tawiah, Vincent & Aleesa, Noha, 2024. "Cultivating resilient economies through responsible mineral resource trade: Does eco-resourcing rebate matter?," Resources Policy, Elsevier, vol. 89(C).
    6. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    7. Toorajipour, Reza & Oghazi, Pejvak & Sohrabpour, Vahid & Patel, Pankaj C. & Mostaghel, Rana, 2022. "Block by block: A blockchain-based peer-to-peer business transaction for international trade," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    8. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    9. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    10. Benedetta Cotta, 0. "What goes around, comes around? Access and allocation problems in Global North–South waste trade," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-15.
    11. Carmen Ruiz-Puente & Daniel Jato-Espino, 2020. "Systemic Analysis of the Contributions of Co-Located Industrial Symbiosis to Achieve Sustainable Development in an Industrial Park in Northern Spain," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    12. Milousi, Maria & Souliotis, Manolis, 2023. "A circular economy approach to residential solar thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 242-252.
    13. Fabio A. Madau & Brunella Arru & Roberto Furesi & Pietro Pulina, 2020. "Insect Farming for Feed and Food Production from a Circular Business Model Perspective," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    14. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    15. Alejandro Aristi Capetillo & Fredric Bauer & Cristina Chaminade, 2023. "Emerging Technologies Supporting the Transition to a Circular Economy in the Plastic Materials Value Chain," Circular Economy and Sustainability, Springer, vol. 3(2), pages 953-982, June.
    16. Abdulkarim Hasan Rashed & Afzal Shah, 2021. "The role of private sector in the implementation of sustainable development goals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2931-2948, March.
    17. Sehrish Atif, 2023. "Mapping circular economy principles and servitisation approach in business model canvas: an integrated literature review," Future Business Journal, Springer, vol. 9(1), pages 1-21, December.
    18. Thayla Zomer & Tim McAloone & Daniela Pigosso, 2024. "Categorization of manufacturing companies’ readiness profiles for the transition to the circular economy: A multidimensional cluster analysis," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 277-288, April.
    19. Andrea Cecchin & Roberta Salomone & Pauline Deutz & Andrea Raggi & Laura Cutaia, 2021. "What Is in a Name? The Rising Star of the Circular Economy as a Resource-Related Concept for Sustainable Development," Circular Economy and Sustainability, Springer, vol. 1(1), pages 83-97, June.
    20. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5277-:d:803565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.