IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4707-d793982.html
   My bibliography  Save this article

Agricultural Ecological Efficiency under the Carbon Emissions Trading System in China: A Spatial Difference-in-Difference Approach

Author

Listed:
  • Guoyong Wu

    (China Center of Western Capacity Development Research, Guizhou University, Guiyang 550025, China
    Rural Revitalization Institute in Karst Region of China, Guizhou University, Guiyang 550025, China
    Guizhou Grassroots Social Governance Innovation High-End Think Tank, Ecological Civilization, Guizhou University, Guiyang 550025, China)

  • Yu Xie

    (School of Economics, Guizhou University, Guiyang 550025, China)

  • Haoxin Li

    (School of Economics, Guizhou University, Guiyang 550025, China)

  • Noman Riaz

    (School of Economics, Guizhou University, Guiyang 550025, China)

Abstract

The agriculture sector plays a significant role in the development of the national economy and providing raw materials to the industrial sector. Trying to get more agricultural productivity, most farmers ignored the adverse effects of agricultural chemicals or pesticides that have a negative impact on the environment. So, the importance of agricultural ecological efficiency needs to be understood. This study attempts to explore whether agriculture, as an important source of carbon dioxide production, can have an effective impact on the agricultural ecological efficiency of carbon trading pilot policies in the context of the global implementation of carbon trading. This study evaluated the agricultural ecological efficiency (AEE) and its spatial distribution characteristics of 31 provinces in China, the data period was from 2000 to 2018. By applying the spatial difference-in-difference (SDID) approach, the study investigates the effects of low-carbon policies on agricultural ecological efficiency in pilot areas. The results demonstrate that low-carbon trading pilot policies have a significant impact on agricultural ecological efficiency. At the same time, the effects of regional economic development, population growth, urbanization, and urban innovation on efficiency are also significant. The improvement of agricultural ecological efficiency requires not only the full implementation of low-carbon trading pilot policies but also the development of regional economy and high-quality agriculture. The findings provide further policy recommendations for high-quality agricultural development.

Suggested Citation

  • Guoyong Wu & Yu Xie & Haoxin Li & Noman Riaz, 2022. "Agricultural Ecological Efficiency under the Carbon Emissions Trading System in China: A Spatial Difference-in-Difference Approach," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4707-:d:793982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunbin Zhang & Rong Zhou & Jundong Hou & Mengtong Feng, 2022. "Spatial-Temporal Evolution and Convergence Characteristics of Agricultural Eco-Efficiency in China from a Low-Carbon Perspective," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    2. Zhongfang Zhang & Lijun Hou & Yuhao Qian & Xing Wan, 2022. "Effect of Zero Growth of Fertilizer Action on Ecological Efficiency of Grain Production in China under the Background of Carbon Emission Reduction," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    3. Xiuquan Huang & Tao Zhang & Xi Wang & Jiansong Zheng & Guoli Xu & Xiaoshan Wu, 2024. "Regional differences of agricultural total factor carbon efficiency in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    4. Yankang Hu & Hongchao Yu & Xinglong Yang, 2023. "Can Rural Human Capital Improve Agricultural Ecological Efficiency? Empirical Evidence from China," Sustainability, MDPI, vol. 15(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    2. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    3. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    4. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    5. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    6. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    7. Zhang, Yanfang & Wei, Jinpeng & Gao, Qi & Shi, Xunpeng & Zhou, Dequn, 2022. "Coordination between the energy-consumption permit trading scheme and carbon emissions trading: Evidence from China," Energy Economics, Elsevier, vol. 116(C).
    8. Johannes König & Carsten Schröder, 2018. "Inequality-minimization with a given public budget," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 607-629, December.
    9. Bao-Ngoc Tong & Cheng-Ping Cheng & Lien-Wen Liang & Yi-Jun Liu, 2023. "Using Network DEA to Explore the Effect of Mobile Payment on Taiwanese Bank Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    10. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    11. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    12. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    13. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    14. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    15. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    16. Yangxue Ning & Yan Zhang & Guoqiang Wang, 2023. "An Improved DEA Prospect Cross-Efficiency Evaluation Method and Its Application in Fund Performance Analysis," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    17. Richard S. Barr & Kory A. Killgo & Thomas F. Siems & Sheri Zimmel, 1999. "Evaluating the productive efficiency and performance of U.S. commercial banks," Financial Industry Studies Working Paper 99-3, Federal Reserve Bank of Dallas.
    18. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    19. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    20. W D Cook & J Zhu, 2011. "Output-specific input-assurance regions in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1881-1887, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4707-:d:793982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.