IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4350-d787972.html
   My bibliography  Save this article

Emerging Solvent Regeneration Technologies for CO 2 Capture through Offshore Natural Gas Purification Processes

Author

Listed:
  • Mohd Mu’Izzuddin Mohd Pauzi

    (CO 2 Research Center (CO2RES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
    Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia)

  • Nurulhuda Azmi

    (CO 2 Research Center (CO2RES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
    Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia)

  • Kok Keong Lau

    (CO 2 Research Center (CO2RES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
    Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia)

Abstract

It is estimated that 40% of natural gas reservoirs in the world are contaminated with acid gases (such as hydrogen sulfide and carbon dioxide), which hinder exploitation activities. The demand for natural gas will increase by 30% from 2020 to 2050, with the rise of industrial activities and the lifting of travel restrictions. The long-term production of these high acid-gas fields requires mitigation plans, which include carbon capture, utilization, and a storage process to reduce carbon emissions. Absorption is one the most established technologies for CO 2 capture, yet it suffers from extensive energy regeneration and footprint requirements in offshore operations. Therefore, the aims of this paper are to review and analyze the recent developments in conventional and emerging solvent regeneration technologies, which include a conventional packed-bed column, membrane contactor, microwave heating, flash drum, rotating packed bed, and ultrasonic irradiation process. The conventional packed column and flash drum are less complex, with minimum maintenance requirements, but suffer from a large footprint. Even though the rotating packed-bed column and microwave heating demonstrate a higher solvent flexibility and process stability, both technologies require regular maintenance and high regeneration energy. Membrane contactor and ultrasonic irradiation absorption systems are compact, but restricted by various operational issues.

Suggested Citation

  • Mohd Mu’Izzuddin Mohd Pauzi & Nurulhuda Azmi & Kok Keong Lau, 2022. "Emerging Solvent Regeneration Technologies for CO 2 Capture through Offshore Natural Gas Purification Processes," Sustainability, MDPI, vol. 14(7), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4350-:d:787972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    2. Fengming Chu & Minghui Su & Guoan Yang, 0. "Effects of stripper configurations on mass transfer and energy consumption of regeneration process," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(2), pages 190-201.
    3. McGurk, Stephen J. & Martín, Claudia F. & Brandani, Stefano & Sweatman, Martin B. & Fan, Xianfeng, 2017. "Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 192(C), pages 126-133.
    4. Saman Hasan & Abubakar Jibrin Abbas & Ghasem Ghavami Nasr, 2020. "Improving the Carbon Capture Efficiency for Gas Power Plants through Amine-Based Absorbents," Sustainability, MDPI, vol. 13(1), pages 1-27, December.
    5. Ma, Z.W. & Zhang, P. & Bao, H.S. & Deng, S., 2016. "Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1273-1302.
    6. Joel, Atuman S. & Wang, Meihong & Ramshaw, Colin & Oko, Eni, 2017. "Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology," Applied Energy, Elsevier, vol. 203(C), pages 11-25.
    7. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    8. El Khaled, D. & Novas, N. & Gázquez, J.A. & García, R.M. & Manzano-Agugliaro, F., 2016. "Alcohols and alcohols mixtures as liquid biofuels: A review of dielectric properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 556-571.
    9. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    10. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fares Almomani & Amera Abdelbar & Sophia Ghanimeh, 2023. "A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art," Sustainability, MDPI, vol. 15(13), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xiao M. & Qin, Zhen & Yu, Yun S. & Zhang, Zao X., 2018. "Experimental and numerical study on CO2 absorption mass transfer enhancement for a diameter-varying spray tower," Applied Energy, Elsevier, vol. 225(C), pages 367-379.
    2. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    4. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
    5. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Siviter, J. & Montecucco, A. & Knox, A.R., 2015. "Rankine cycle efficiency gain using thermoelectric heat pumps," Applied Energy, Elsevier, vol. 140(C), pages 161-170.
    7. von Bohnstein, Maximilian & Richter, Marcel & Graeser, Phillip & Schiemann, Martin & Ströhle, Jochen & Epple, Bernd, 2021. "3D CFD simulation of a 250 MWel oxy-fuel boiler with evaluation of heat radiation calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    9. Ahn, Yuchan & Han, Jeehoon, 2018. "Economic optimization of integrated network for utility supply and carbon dioxide mitigation with multi-site and multi-period demand uncertainties," Applied Energy, Elsevier, vol. 220(C), pages 723-734.
    10. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.
    11. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    12. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    13. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    14. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    15. Barzagli, Francesco & Giorgi, Claudia & Mani, Fabrizio & Peruzzini, Maurizio, 2018. "Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: A comparative analysis carried out by 13C NMR spectroscopy," Applied Energy, Elsevier, vol. 220(C), pages 208-219.
    16. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
    18. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    19. Pavel Skryja & Igor Hudak & Jiří Bojanovsky & Zdeněk Jegla & Lubomír Korček, 2022. "Effects of Oxygen-Enhanced Combustion Methods on Combustion Characteristics of Non-Premixed Swirling Flames," Energies, MDPI, vol. 15(6), pages 1-21, March.
    20. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4350-:d:787972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.