IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4346-d787904.html
   My bibliography  Save this article

Land-Use Impact on Water Quality of the Opak Sub-Watershed, Yogyakarta, Indonesia

Author

Listed:
  • Widodo Brontowiyono

    (Environmental Engineering Department, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
    Center for Environmental Studies, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia)

  • Adelia Anju Asmara

    (Environmental Engineering Department, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
    Center for Environmental Studies, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia)

  • Raudatun Jana

    (Water Quality Laboratory, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia)

  • Andik Yulianto

    (Environmental Engineering Department, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
    Risk Assessment Analysis Laboratory, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia)

  • Suphia Rahmawati

    (Environmental Engineering Department, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
    Risk Assessment Analysis Laboratory, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia)

Abstract

The integrated monitoring system of water quality is eminently reliant on water quality trend data. This study aims to obtain water quality patterns related to land-use change over a periodic observation in the Opak sub-watershed, Indonesia, both from a seasonal and spatial point of view. Landsat image data from 2013 to 2020 and water quality data comprising 25 parameters were compiled and analyzed. This study observed that land use remarkably correlated to water quality, especially the building area representing the dense population and various anthropogenic activities, to pollute the water sources. Three types of pollutant sources were identified using principal component analysis (PCA), including domestic, industrial, and agricultural activities, which all influenced the variance in river water quality. The use of spatiotemporal-based and multivariate analysis was to interpret water quality trend data, which can help the stakeholders to monitor pollution and take control in the Opak sub-watershed. The results investigated 17 out of 25 water quality parameters, which showed an increasing trend from upstream to downstream during the observation time. The concentration of biological oxygen demand over five days (BOD 5 ), chemical oxygen demand (COD), nitrite, sulfide, phenol, phosphate, oil and grease, lead, Escherichia coli ( E. coli ), and total coli, surpassed the water quality standard through spatial analysis.

Suggested Citation

  • Widodo Brontowiyono & Adelia Anju Asmara & Raudatun Jana & Andik Yulianto & Suphia Rahmawati, 2022. "Land-Use Impact on Water Quality of the Opak Sub-Watershed, Yogyakarta, Indonesia," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4346-:d:787904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Casalí, J. & Giménez, R. & Díez, J. & Álvarez-Mozos, J. & Del Valle de Lersundi, J. & Goñi, M. & Campo, M.A. & Chahor, Y. & Gastesi, R. & López, J., 2010. "Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 97(10), pages 1683-1694, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giménez, R. & Casalí, J. & Grande, I. & Díez, J. & Campo, M.A. & Álvarez-Mozos, J. & Goñi, M., 2012. "Factors controlling sediment export in a small agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 110(C), pages 1-8.
    2. Boongaling, Cheamson Garret K. & Faustino-Eslava, Decibel V. & Lansigan, Felino P., 2018. "Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines," Land Use Policy, Elsevier, vol. 72(C), pages 116-128.
    3. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    4. Zhang, Shanghong & Liu, Yan & Wang, Taiwei, 2014. "How land use change contributes to reducing soil erosion in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 133(C), pages 65-73.
    5. Chahor, Y. & Casalí, J. & Giménez, R. & Bingner, R.L. & Campo, M.A. & Goñi, M., 2014. "Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 134(C), pages 24-37.
    6. Merchán, D. & Causapé, J. & Abrahão, R. & García-Garizábal, I., 2015. "Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. II: Salts and nitrate exported," Agricultural Water Management, Elsevier, vol. 158(C), pages 288-296.
    7. Ball Coelho, B. & Murray, R. & Lapen, D. & Topp, E. & Bruin, A., 2012. "Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 51-61.
    8. Jeremy Dominic & Ahmad Aris & Wan Sulaiman, 2015. "Factors Controlling the Suspended Sediment Yield During Rainfall Events of Dry and Wet Weather Conditions in A Tropical Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4519-4538, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4346-:d:787904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.